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Abstract 27 

Pronounced climate warming has resulted in a significant reduction of snow cover 28 

extent, as well as poleward and upslope shifts of shrubs in Arctic and alpine 29 

ecosystems. However, it is difficult to establish links between changes in snow cover 30 

and shrub distribution changes due to a lack of in situ and long-term snow records in 31 

relation to abundance shifts of shrubs at their leading (i.e., cold) and trailing (i.e., 32 

warm) edges. We used remote sensing to extract long-term changes in both snow 33 

cover and shrub distributions in response to climate change in the alpine tundra of the 34 

Changbai Mountains in Northeast China. First, we analyzed spatio-temporal changes 35 

in snow cover during the snowmelt period (April 1st to June 15th) over the past 54 36 

years (1965–2019). Then, we analyzed distribution changes of the dominant 37 

evergreen alpine shrub, Rhododendron aureum, using 31 years (1988–2019) of 38 

Landsat NDVI archives. We applied a novel approach by analyzing NDVI data from 39 

autumn only, when R. aureum is green yet most of the surrounding plants are already 40 

brown. Finally, we tested the relationship between snowmelt date and the distribution 41 

of R. aureum. We found that the fraction cover of R. aureum experienced greater loss 42 

than gain in the last 30 years. R. aureum expanded at the leading edge, establishing in 43 

snow-rich habitats, yet retracted further at the trailing edge due to loss of snow 44 
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habitats. We identified the preferred snowmelt regime (habitats with snowmelt date of 45 

20 April or later) of this shrub species and found that further advances in snowmelt 46 

dates would lead to the upward range shift of R. aureum in a warming climate. Our 47 

results indicate that spring snow cover change affected distribution changes of R. 48 

aureum. Our study highlights that long-term changes in snow cover due to climate 49 

change have already had marked impacts on plant species distributions in alpine 50 

ecosystems.  51 

 52 

Keywords: Snow cover change; Evergreen shrub; Distribution change; Species 53 

distribution modelling 54 

 55 

Highlights 56 

The fraction cover of R. aureum in the Changbai Mountains experienced greater loss 57 

than gain in the last 30 years. 58 

Changes in leading and trailing edges of R. aureum related to snow cover trends in the 59 

last 50 years. 60 

Further advance in snowmelt dates would lead to the upward range shift of R. aureum. 61 

 62 

  63 
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1. Introduction 64 

Snow is an important component of cold biomes, controlling local-scale 65 

environmental conditions (e.g., soil temperature and moisture), defining growing 66 

season length, and determining plant distribution patterns (Billings and Bliss, 1959; 67 

Keller et al., 2005; Walker et al., 2001; Wipf et al., 2009). During the past decades, 68 

pronounced climate warming in Arctic and alpine ecosystems has resulted in a 69 

significant reduction of snow cover extent (Bokhorst et al., 2016; Klein et al., 2016; 70 

Marty et al., 2017). Meanwhile, shrub species, which are often the characteristic and 71 

dominant species in cold biomes, have been observed to shift poleward and upslope in 72 

geographic distribution (Formica et al., 2014; Malfasi and Cannone, 2020; Martin et 73 

al., 2017; Myers-Smith et al., 2015; Scharnagl et al., 2019; Tape et al., 2006). Snow 74 

cover change has been found to affect shrub phenology, growth, and abundance via 75 

indirect effects on soil conditions and frost exposure (Cooper et al., 2019; Daniëls et 76 

al., 2015; Francon et al., 2020; Gerdol et al., 2013; Matteodo et al., 2016; Sturm et al., 77 

2001; Wheeler et al., 2014; Wipf and Rixen, 2010). However, it is difficult to establish 78 

links between changes in snow cover and in shrub distribution because there is a lack 79 

of in situ and long-term snow records in relation to abundance shifts of shrubs at their 80 

leading (i.e., cold) and trailing (i.e., warm) edges (Hallinger et al., 2010). This 81 

knowledge gap prevents an in-depth understanding of future plant distribution 82 

changes in cold biomes in the context of climate warming.  83 

Remote sensing is a practical way to obtain snow cover information (Hall, 2012). 84 

Several studies have indicated that understanding snow data derived from remote 85 
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sensing are beneficial for understanding plant distribution changes in cold biomes 86 

(Beck et al., 2005; Carlson et al., 2015; Niittynen and Luoto, 2018; Randin et al., 87 

2009). Nevertheless, long-term snow cover products for recent decades of accelerated 88 

climate change are still rare, especially for alpine regions where snow cover changes 89 

occur at fine scales in rugged terrain (Carlson et al., 2013; Dedieu et al., 2016). Snow 90 

cover information can be extracted from optical satellite imagery, such as the Landsat 91 

series, the longest available record among the different satellite observation platforms. 92 

However, determining snow cover extent faces a number of methodological issues. 93 

Changeable weather in mountainous regions and long return intervals of optical 94 

satellites can make it difficult to obtain continuous cloud-free observations (Rosenthal 95 

and Dozier, 1996). Furthermore, redistribution of snow occurs frequently because of 96 

changing wind drift, snow avalanches, and multiple snowfalls in winter (Hiemstra et 97 

al., 2002), which increases the difficulty of capturing the ever-changing snow 98 

distribution to derive accurate snow cover duration. However, a useful period to 99 

define snow cover change is during the spring snowmelt season, which is widely 100 

believed to be a critical period for plant growth and distribution (Cooper et al., 2011; 101 

Heegaard, 2002; Keller et al., 2005; Wipf, 2010). During this period, the snowmelt 102 

pattern regulates several abiotic constraints, such as the number and intensity of 103 

spring freezing events. Thus it acts as a filter determining community composition 104 

and plant distributions (Good et al., 2019; Winkler et al., 2018). Sensitive responses 105 

of shrubs (phenology, growth, and regeneration) to snowmelt date have been 106 

demonstrated in experimental and observational studies (Carbognani et al., 2014; 107 



6 

 

Francon et al., 2020; Klanderud and Birks, 2003; Mallik et al., 2011; Rixen et al., 108 

2010; Sandvik and Odland, 2014; Wheeler et al., 2014), indicating that shrub 109 

distribution change is closely related to snow cover during the snowmelt season.  110 

Shrub distribution changes in cold biomes have been assessed based on long-term 111 

plot monitoring and analysis of repeated field photos (Formica et al., 2014; 112 

Myers-Smith et al., 2015; Tape et al., 2006), but the detection of large-scale changes 113 

in shrub cover has been hampered by a lack of historical records with sufficient scale 114 

or resolution (Beamish et al., 2020; van Lier et al., 2009). Therefore, remote sensing 115 

has a high potential to capture entire shrub distribution ranges, though it is still a 116 

significant challenge to detect shrub cover in Arctic and alpine vegetation due to 117 

heterogeneous species composition and ground cover (Bayle et al., 2019; Räsänen and 118 

Virtanen, 2019). However, arctic and alpine shrubs, e.g., from the Ericaceae family, 119 

often form single-species dominant clusters that can cover areas that are large enough 120 

to detect with high-resolution imagery (e.g., aerial photos). High-resolution imagery is, 121 

however, not available for extracting historical shrub distribution in many cold 122 

regions, again due to lack of historical coverage (Greaves et al., 2016). Pixel-level 123 

analyses of trends in vegetation greening (i.e., assessing trends in time series of 124 

spectral vegetation indices derived from optical satellite imagery) have been related to 125 

the observed shrub expansion and encroachment in Arctic and alpine ecosystems 126 

(Berner et al., 2020; Carlson et al., 2017; Forbes et al., 2010; Macias-Fauria et al., 127 

2012). However, processes at both leading and trailing edges are often difficult to 128 

detect, especially at the species level. In most studies, precisely relating an increase in 129 
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shrub occurrence to greening signals – using the maximum values of spectral 130 

vegetation indices (e.g., normalized difference vegetation index, NDVI) – has proven 131 

difficult because several plant communities exhibit similarly high greenness values at 132 

the peak of the growing season (Myers-Smith et al., 2020). A possible solution to 133 

differentiate between species is to analyze greenness in different seasons. So far, this 134 

use of key phenological anomalies has rarely been tested in Arctic and alpine 135 

vegetation studies but has been used in remote sensing studies concerning the 136 

mapping of invasive plants (Bradley, 2014; Labonté et al., 2020; Peterson, 2005; 137 

Weisberg et al., 2017). A useful but neglected period to identify and track shrubs is 138 

autumn, when the phenological trajectories of many plants diverge from one another 139 

(Bayle et al., 2019; Filippa et al., 2019). Due to a high chlorophyll or anthocyanin 140 

content of leaf tissue in autumn, both deciduous ericaceous shrubs (e.g., Vaccinium 141 

uliginosum) with red leaves and evergreen ericaceous shrubs (e.g., Rhododendron 142 

ferrugineum) with green leaves have been observed to exhibit distinctive green or red 143 

reflectance values compared with those of sedges and grasses with brown leaves 144 

(Bayle et al., 2019; Hughes, 2011). Such phenological differences in autumn provide a 145 

promising solution for mapping and tracking shrubs over time.  146 

 In this study, we aimed to identify long-term spring snow dynamics and to extract 147 

distribution changes of an alpine dominant and evergreen ericaceous shrub, 148 

Rhododendron aureum, which grows in habitats with sufficient snow cover in the 149 

alpine tundra of the Changbai Mountains, Northeast China. We obtained the 150 

distribution of R. aureum by means of autumn greenness values and linked this 151 
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information to data on snow melting date (and changes therein), using a range of 152 

remote sensing products and transect plots for ground truthing. We hypothesized that: 153 

(i) spring snow cover extent decreased over the last 50 years due to climate warming, 154 

indicating a shrinking cryosphere in alpine ecosystems; (ii) during the last 30 years, R. 155 

aureum decreased in cover at the trailing (lower-elevation) edge of its distribution and 156 

increased at the leading (higher-elevation) edge; and (iii) a loss of snow habitats was a 157 

main environmental driver for the upward elevational shift in R. aureum cover.  158 

 159 

2. Materials and Methods  160 

 161 

2.1 Study area 162 

 The Changbai Mountains are located in Northeast China (41°41′49″ to 163 

42°25′18″N and 127°42′55″ to 128°16′48″E) at the border with North Korea (Figure 164 

1). Tree line position in the region is generally below 1850 m, and the alpine tundra 165 

extends from 1850 to the mountain summit at 2749 m. Annual mean temperature is 166 

-6.67 °C, and annual average precipitation is 958 mm at the mountain summit (Zong 167 

et al., 2016). The dominant rock substrate is of volcanic origin, such as breccia, 168 

pumice and volcanic ash. Spring is from April to June and growing season of tundra 169 

vegetation usually starts from May and ends in early September. The spring snowmelt 170 

period lasts from ca. April to June in the alpine tundra. Snow cover can persist in 171 

gullies and shady slopes for about one month longer than at adjacent exposed sites. 172 

The alpine tundra located at the top of the Changbai volcano has been without 173 
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human disturbance (e.g., grazing) for several hundred years. The latest major volcanic 174 

eruption in the Changbai Mountains occurred in 1702, destroying all alpine tundra 175 

vegetation (Liu et al., 1998). The present alpine tundra vegetation has thus 176 

recolonized the area over the last three hundred years. The vegetation succession is 177 

still on-going as mountain birch forests were observed moving upward (Zong et al., 178 

2014). Dominant plant species include the evergreen shrub Rhododendron aureum, as 179 

well as deciduous dwarf shrubs like Vaccinium uliginosum and Dryas octopetala var. 180 

asiatica (Wada and Nakai, 2004), sedge communities dominated by Carex 181 

pseudo-longerostrata. Especially at lower elevations, communities with herbaceous 182 

plants such as grasses (e.g., Deyeuxia spp.) are abundant.  183 

Known as a representative and dominant alpine tundra species across Northeast 184 

Asia (Kudo, 1993), R. aureum is the only evergreen plant species that frequently 185 

forms single-species clusters in this study area. R. aureum is not a typical alpine 186 

species that tolerates frost. It requires snow cover protection from extreme low 187 

temperatures to survive in the alpine ecosystem (Liu et al., 2009; Zhang et al., 2010). 188 

Climate warming has significantly advanced spring snowmelt date and shortened 189 

snow cover duration, which in turn has affected the survival and distribution of R. 190 

aureum. This phenomenon has also been observed in other regions of Northeast Asia 191 

(Kudo, 1991; Kudo, 1993; Kudo and Ito 1992). In addition, R. aureum benefits from 192 

snow environments because snow prevents frost damage and provides sufficient water 193 

for growth during the spring snowmelt season (Liu et al., 2009; Zhang et al., 2010). 194 

This habitat preference of R. aureum allowed us to link spring snow cover change to 195 
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R. aureum distribution changes.  196 

 197 

Figure 1. Upper Left: location of Changbai Mountains in Northeast China. Lower left: 198 

The alpine tundra in the study region, extending from 1850 to the summit at 2749 m 199 

(bottom). The red star represents the location of the climate station at the summit of 200 

the Changbai Mountains. The yellow line represents the international boundary 201 

between China and North Korea. Plots for ground truthing are indicated as green 202 

points. Right: field photos: (A) early autumn, 1 September 2017; (B) spring, 13 June 203 

2017; and (C) early spring, 22 May 2015, showing the study site landscape at high 204 
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(above 2300 m), mid (2000-2300 m), and low elevations (1850-2000 m), respectively. 205 

Plant communities with green color in the field photos indicate R. aureum 206 

communities. Panel (B) shows R. aureum in white bloom. Plant communities with 207 

yellow and gray color are deciduous shrubs and sedge communities in (A) and herb 208 

communities in (B) and (C).  209 

 210 

2.2 Workflow overview 211 

 To link R. aureum distribution changes to patterns in snow cover, we combined 212 

long-term satellite data from a variety of sources with other spatial datasets into two 213 

overarching models (Figure 2).  We aimed to answer two questions: 1) is the spatial 214 

distribution of R. aureum distribution related to snow melting date? 2) are temporal 215 

changes in R. aureum distribution following changes in snow melting date? In what 216 

follows, we first describe all datasets and necessary image pre-processing, and then 217 

step by step elaborated the processes of 1) extracting spatial (a) and temporal (b) 218 

patterns in snow cover change; 2) extracting spatiotemporal patterns in R. aureum 219 

distribution; 3) establishing a model linking R. aureum distribution changes to snow 220 

cover change; 4) establishing a model to predict how future snowmelt dates will affect 221 

future distributions of R. aureum.  222 
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223 

Figure 2．Schematic workflow that summarizes data preparation and processing steps, 224 

including the estimation of Rhododendron aureum fraction cover time series based on 225 

NDVI from Landsat images and high resolution images and field survey data (left), 226 

extraction of environmental data, most importantly the assessment of snow cover 227 

trends and snowmelt date based on various satellite datasets (right), and integration of 228 

both into two models for R. aureum (bottom). RA = R. aureum. HR refers to high 229 

resolution. PPI is the pixel purity index while MNF stands for minimum noise fraction 230 

transformation with ENVI. LST refers to land surface temperature derived from 231 

Landsat images. ① NDVI calibration includes orthorectification, atmospheric and 232 

radiometric calibrations; ② Harmonizations of multi-source images with ENVI; ③ 233 

C correction method for terrain correction.  234 

 235 

2.3 Data collection and pre-processing 236 



13 

 

2.3.1 Climate data 237 

Climate station data from 1959 to 2017 were obtained from the Tianchi weather 238 

station on the mountain summit from the Chinese meteorological data network 239 

(http://data.cma.gov.cn/, 42°10N, 128°50E, 2623 m, Figure 1). Quality control was 240 

performed to test data homogeneity using the RHtestV4 software 241 

(http://etccdi.pacificclimate.org/software.shtml).  242 

 243 

2.3.2 Spring snow dataset 244 

We collected multi-source satellite images with resolutions ranging from 0.8 m to 245 

60 m that covered the entire snowmelt period (1 April to 15 June) from 1965 to 2019 246 

(Supplementary Tab. 1). Six scenes of declassified KeyHole-4B data (1.83 m 247 

resolution) were acquired from the United States Geological Survey (USGS, 248 

http://edc.usgs.gov/), which uses Keyhole camera systems of the Corona satellite (a 249 

United States Department of Defense intelligence program, operative from 1959 to 250 

1972). Other satellite images were 110 scenes of Landsat series (30 m resolution), two 251 

scenes of Pléiades-1 (0.8 m),across the archival satellite chronology (1978–2019) 252 

from the USGS website (http://glovis.usgs.gov). We removed all images with more 253 

than 50% cloud cover. 254 

 255 

2.3.3 Autumn vegetation dataset 256 

The end of the growing season in this alpine tundra is initiated late August, and 257 

snow onset occurs in early October (Zhang et al., 2010). We used a time window in 258 

http://data.cma.gov.cn/
http://edc.usgs.gov/
http://glovis.usgs.gov/
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autumn (September 20th to October 10th) for detecting the R. aureum distribution. 259 

Within this time window, R. aureum, as the only evergreen plant, is readily 260 

distinguishable from other plants, which are senesced (Fig. 3, a and b). Any green 261 

signal in that period thus corresponds largely to R. aureum presence, making it 262 

possible to use remote sensing to detect changes in its distribution over time. Finally, 263 

one scene of GF-2 satellite imagery (1 m resolution) obtained on 23 September 2017 264 

(China Centre for Resource Satellite Data and Application, 265 

http://218.247.138.119:7777/DSSPlatform/index.html), one scene of IKONOS 266 

satellite image (1 m resolution) obtained on 20 September 2002, and 7 scenes of 267 

Landsat TM/ ETM+ imagery (1988–2019) were collected and used in this study 268 

(Supplementary Tab.1).  269 

 270 

Figure 3. True color RGB image of Sentinel-2 (middle and right) and field photos (left) 271 

taken in the alpine tundra of the Changbai Mountains at peak (a) and end (b) of the 272 

http://218.247.138.119:7777/DSSPlatform/index.html
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growing season. Green color at the end of the growing season represents the 273 

evergreen shrub, R. aureum; the white circle marks a distinctive rock for reference.  274 

 275 

2.3.4 Image pre-processing 276 

(1) Orthorectification calibration was applied to all high-resolution images 277 

(KeyHole-4B, Pléiades-1, and GF-2) through the Advanced World 3D (AW3D) data 278 

with high ground resolution (4.05 m), which was obtained in 2017 via the Advanced 279 

Land Observing Satellite (ALOS, http://www.eorc.jaxa.jp/ALOS). Specifically, we 280 

followed the method of Goossens et al. (2006) and Mihai et al. (2016) to eliminate the 281 

deformations and S-shaped distortion for the KeyHole-4B images.  282 

(2) Radiometric calibration and atmospheric corrections were applied to all 283 

images based on ENVI tool platform (version 5.3). We applied terrain corrections  284 

following the method of Teillet et al., (1982) to eliminate illumination effects in 285 

rugged alpine terrain by using SRTM DEM (30 m resolution, http://glovis.usgs.gov). 286 

Digital numbers (DNs) of all Landsat images were converted into surface reflectance 287 

using the ENVI FLAASH module. 288 

(3) Since the high-resolution images (KeyHole-4B, Pléiades-1, IKONOS, and 289 

GF-2) used in this study were cloud free, we used the Fmask method to extract cloud 290 

masks for Landsat images (Zhu et al., 2015). The normalized difference snow index 291 

(NDSI) itself could effectively discriminate snow and clouds (Hall 2012), which was 292 

a supplement for cloud masking.   293 

(4) To homogenize multi-source images, we re-projected all images to WGS84 294 
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projection. Landsat series including MSS, TM, ETM+, and OLI sensors, accounted 295 

for 80% of our dataset. Spatial resolution and spectral reflectance of TM and ETM+ 296 

images, which were used for vegetation analysis in this study, remained unaltered.  297 

 298 

2.4 Spring snow cover change 299 

Step 1: Snow cover extraction 300 

 For the high-resolution images (KeyHole-4B and Pléiades-1), snow cover extent 301 

was extracted by using a supervised classification method combined with visual 302 

interpretation. For the Landsat data, snow cover extent was retrieved using NDSI 303 

(Hall, 2012). Pixels with NDSI values higher than 0.4 were classified as snow if their 304 

visible reflectances (Landsat band 3) were greater than 0.10 and their near-infrared 305 

reflectances (Landsat band 4) were greater than 0.11 (Dozier, 1989). The water body 306 

(i.e., Tianchi Lake at the top of the mountain) was masked from the final snow 307 

occurrence map. 308 

 309 

Step 2: Snow retrieval validation 310 

 We did not use ground-level snow cover data for the validation of the derived 311 

snow cover because of its sparsity due to the remoteness and inaccessibility of the 312 

high mountain areas under study. However, studies showed that snow cover can be 313 

effectively validated using higher resolution images (Beck et al., 2005). To achieve 314 

this validation, we compared one pair of Pléiades-1 (0.8 m resolution, acquired on 1 315 

June 2014) and Landsat-8 data (10 m resolution, acquired on 30 May 2014); showing 316 
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a TSS statistic of 0.945. Overall, the snow identification ability of the coarser-grained 317 

satellite images used in this study was thus deemed sufficiently high.  318 

 319 

Step 3: Pixel level snow cover change and snowmelt date 320 

The snow occurrence data acquired from images with various resolutions (i.e., 321 

1.83 m resolution from KeyHole-4B imagery and 30 m resolution from Landsat 322 

imagery) were first resampled to a pixel size of 30 m by using the Cubic convolution 323 

resampling method, which determines the new value of a cell based on fitting a 324 

smooth curve through the 16 nearest input cell centers (Shen and Tan 2020). Pixel 325 

level snow cover trend and snowmelt date was modelled using binomial generalized 326 

linear model (GLM) following Macander et al. (2015) and Niittynen and Luoto 327 

(2018). Every pixel had three strings of information that were passed as inputs for 328 

pixel-based GLMs: binary scores of snow occurrence (dependent variable); the 329 

corresponding year values (independent); and the corresponding DOY (day of year) 330 

values (independent). For the snow cover trend results, a positive trend represented 331 

increasing snow cover, while a negative trend represented decreasing snow cover. All 332 

of the image processing and statistics were performed in R environment (R Core 333 

Team) with the Raster package.  334 

 335 

2.5 Distribution changes of Rhododendron aureum 336 

2.5.1 Linear spectral unmixing 337 

Spectral unmixing is a procedure which is implemented to decompose an image 338 
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pixel into several constituents or endmembers (Ichoku and Karnieli 1996). An 339 

endmember is a pure surface material or land cover type that is assumed to have a 340 

unique spectral signature (Asis and Omasa 2007). As a widely used spectral unmixing 341 

method, the linear spectral unmixing model (LSUM) has proven to be effective in 342 

estimating endmember fractions due to its simplicity, interpretability, and high 343 

consistency for various land surface conditions (Small, 2003; Xiao and Moody, 2005; 344 

Yu et al., 2017). Two constraints were maintained in the LSUM: the fractions across 345 

all endmembers sum to one in a pixel, and each endmember fraction is in the range 0 346 

to 1.  347 

The LSUM assumed that (1) the spectral signature of a given pixel is the linear, 348 

proportion-weighted combination of the endmember spectra (Smith et al., 1990); and 349 

(2) each photon interacts only once with each endmember, without any non-linear 350 

processes (i.e. multiple scattering effect) involved (Cortés et al., 2014). The multiple 351 

scattering effect often occurs in areas with rugged ground surface, e.g., forested area 352 

or urban build-up, which may affect the accuracy of spectral unmixing (Dixit and 353 

Agarwal, 2021). The alpine tundra in this study area is distributed above the treeline, 354 

with vegetation composed of dwarf plant communities. We could thus ignore the 355 

bilinear mixing effects (i.e., interactions among components with different heights) in 356 

the unmixing process. To assess whether terrain complexity may affect our results, we 357 

analyzed terrain roughness at four resolutions (i.e., 5 m, 10 m, 15 m, and 30 m). We 358 

first calculated a roughness index (Riley et al., 1999) based on the AW3D DEM data 359 

with 5 m resolution data, and subsequently resampled the data to 10 m, 15 m, and 30 360 
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m resolutions in ArcGIS. We then applied a 30 m × 30 m window and calculated the 361 

variance of roughness of the pixels within that window. Theoretically, if terrain is 362 

rugged, the variance of roughness within a specific window should decrease as 363 

resolution increased. We however found that the variance of roughness did not 364 

decrease with increasing resolution from 5 m to 15 m (Supplementary Figure 1), 365 

indicating that the terrain is relatively uniform at the 30 m resolution and multiple 366 

scattering effects are limited in this study area.  367 

 368 

Step 1: Extraction of candidate endmembers 369 

The water body (the volcanic lake), cement road, and volcanic ash were excluded 370 

by determining pixels with NDVI < 0. Next, the most critical step in LSUM 371 

application is to find suitable endmembers to develop high quality fraction images. In 372 

this study, we combined the minimum noise fraction (MNF) transform algorithm and 373 

the pixel purity index (PPI) method to find the most spectrally pure pixels on the 374 

Landsat imagery. We used the MNF algorithm to determine the intrinsic data 375 

dimensionality and to separate signal from noise. The resulting data is represented in 376 

the MNF subspace and enclosed with a best-fitting simplex, the vertices of which are 377 

assumed to correspond with the component endmember (Ichoku and Karnieli 1996). 378 

Then we used the pixel purity index (PPI), the most commonly used method to find 379 

extremely pure pixels in multispectral images, to select candidate endmembers that 380 

are linearly independent (Boardman et al., 1995). The purest pixel in a given image is 381 

computed by repeatedly projecting n-D scatter plots on a random unit vector (Garg 382 
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2020). Both the MNF and PPI steps were conducted using ENVI software (version 383 

5.3). In the end, candidate endmembers of R. aureum (representing greenness signal), 384 

deciduous shrubs (representing redness signal), and grasses (representing yellowness 385 

signal) were selected. The candidate endmembers of R. aureum were later evaluated 386 

by comparing to the reference endmembers in the next Step 2&3. The fraction cover 387 

of deciduous shrubs and grasses were no longer used.  388 

 389 

Step 2: Extraction of reference endmembers of Rhododendron aureum 390 

The high-resolution GF-2 image (25 September 2017) and IKONOS image (20 391 

September 2002) were used to extract reference endmembers of Rhododendron 392 

aureum. In order to establish links between plot-level R. aureum cover and R. aureum 393 

occurrence on the high resolution imagery with a 1 m pixel size, we conducted field 394 

surveys at peak growing season and in autumn between 2014 and 2017, each year 395 

covering a different side of the mountain for logistical reasons. Three transects along 396 

the northern, western and southern sides of the mountain were set along the entire 397 

elevation range from 1850 to 2600 m. Each transect had a width of 200 m and 398 

included plots positioned at elevation intervals of 50 m. Four plots of 1 m² were 399 

established at each of the elevations, for a total of 192 plots across the three transects. 400 

The GPS location of each plot was measured using a handheld GPS (GARMIN GPS 401 

60CX) with a horizontal error of 3 m. The abundance, height, and cover of each plant 402 

species inside the plots were recorded. Plant cover was calculated as the ratio of the 403 

area a species occupied divided by the sample plot size (1×1 m2) and was measured 404 
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using a frame (1×1 m2 equally divided into 100 subplots) for each species in the field.  405 

We then calculated the NDVI of the high resolution GF-2 image (25 September 406 

2017) and IKONOS image (20 September 2002) with the following equation: 407 

NDVI = (NIR-Red)/(NIR+Red)                                    (1) 408 

where NIR and Red are the spectral reflectance in the near-infrared band and red 409 

band, respectively.  410 

From the derived NDVI map, we extracted the NDVI values of locations of 165 411 

field survey plot with R. aureum occurrences (plot size=1 m2) and compared the 412 

NDVI values with the cover of R. aureum and herbs within these plots. Although the 413 

horizontal error (about 3 m) of the handheld GPS (GARMIN GPS 60CX) used during 414 

field work might have caused a mismatch between the 1 m resolution GF-2 image 415 

pixel and the 1 m2 field survey plot, we still found a significant non-linear relationship 416 

between the NDVI greenness value and the plot-level R. aureum cover (Fig. 4), aided 417 

by the fact that most R. aureum patches were larger than 10 m in diameter. Autumn 418 

NDVI values and percent cover of R. aureum were indeed highly correlated (Figure 4). 419 

Ideally, when plant cover reaches 100%, NDVI equals 1. However, R. aureum is not a 420 

high leaf area plant, with extensive lateral branches occupying the space. Also, the 421 

GF-2 image was taken in late September, when R. aureum already passed its peak 422 

growth of the year. These factors may have resulted in a mismatch between NDVI and 423 

R aureum cover. Our predictive model suggests when R. aureum cover was greater 424 

than 90%, the NDVI value could reach 0.4, yet few higher NDVI values were 425 

observed (Figure 4). We can be 95% certain that NDVI-values of 0.4 or higher 426 
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correspond with pixels with R. aureum cover of 90% or higher. Therefore, we set the 427 

NDVI threshold at 0.4, corresponding to a plot-level R. aureum cover of > 90%, and 428 

then extracted pixels which were treated as reference R. aureum endmembers (pixels 429 

purely occupied by this species with distinct spectral information).  430 

  431 

Figure 4. Correspondence between plant cover of R. aureum (green color) and herbs 432 

(brown color, as shown in Figure 1c) in 1 m2 field survey plots and the NDVI value of 433 

a GF-2 high-resolution satellite image (23 September 2017, pixel size=1 m). Number 434 

of plots=165. The lines represent the results from generalized linear regressions (the 435 

glm function with ‘logit’ link from the ‘MASS’ package in R 2020). The grey zone 436 

indicates the 0.95 confidence interval. 437 

 438 

Step 3: Extract Rhododendron aureum distributions 439 

 To further verify that the candidate R. aureum endmembers with 30 m resolution 440 

from Landsat imagery were sufficiently accurate for LUSM, the reference R. aureum 441 
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endmembers from the 1 m resolution imagery (as identified with the field survey data) 442 

were compared to the candidate R. aureum endmembers (Asis and Omasa 2007). We 443 

abandoned candidate endmembers that mismatched reference endmembers (i.e., the 444 

candidate endmembers did not purely contain reference endmembers). Finally, three 445 

distinct endmembers were identified: the evergreen R. aureum, the deciduous shrubs, 446 

and the grasses (Supplementary Fig. 2). LUSM was then employed to extract R. 447 

aureum fractions from Landsat images about every 5 years (1988, 1992, 2001, 2004, 448 

2009, 2013, and 2019). The whole process of linear spectral unmixing was conducted 449 

using the software ENVI (Version 5.3). 450 

 451 

Step 4: Validation of Rhododendron aureum distributions 452 

The R. aureum fraction images were assessed using the overall root-mean-square 453 

error (RMSE) of classification (Willmott, 1982). The lower the RMSE obtained, the 454 

higher unmixing accuracy was. For all Landsat images, RMSE were always lower 455 

than 3.9, indicating high unmixing accuracy (Supplementary Table 2). We conducted 456 

validation by using the aforementioned high-resolution images and the Landsat R. 457 

aureum fraction images (Suess et al., 2018). Specifically, the GF-2 image of 2017 and 458 

the IKONOS image of 2002 were used to validate the Landsat shrub fraction maps of 459 

2019 and 2001, respectively. High resolution shrub abundance was calculated as the 460 

proportion of R. aureum footprints (i.e., 1-m resolution pixels identified as containing 461 

R. aureum) in each Landsat pixel (i.e., 30 × 30 m area). We statistically compared the 462 

estimated Landsat-based shrub cover fractions with the reference high resolution 463 
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shrub abundance. As a measure of accuracy, we calculated the coefficient of 464 

determination (R2 = 0.982) of the fitted linear regression model (Figure 5). 465 

 466 

Figure 5. Scatterplot comparing Landsat shrub fraction to high resolution (HR) shrub 467 

abundance (the proportion of R. aureum footprints in each Landsat pixel). The black 468 

line represents the linear regression line fitting data that starts from the tipping point 469 

(0.27) onward.  470 

 471 

2.5.2 Comparison with historical and current distributions of Rhododendron aureum 472 

We selected R. aureum distributions in 1988 and 2019 as the historical and 473 

current distributions, respectively. By comparing high resolution image classification 474 

results, we found that biased estimations occurred for pixels with a low fraction of R. 475 

aureum cover, especially < 0.27 (Figure 5). Thus, we excluded non- R. aureum pixels 476 

from the R. aureum fraction images, for both 1988 and 2019. The fractional cover 477 

change of R. aureum was exhibited by using the differences of fraction cover of R. 478 

aureum between 2019 and 1988 (i.e., fraction cover of 2019 minus that of 1988). To 479 
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verify this fraction cover change, R. aureum fraction dynamics computed from 480 

Landsat images taken at intervals of approximately 5 years were linked to and 481 

compared with changes we previously computed at the end years, 1988 and 2019.  482 

 483 

2.6 Species distribution models (SDM) 484 

 To assess whether changes in R. aureum distribution follow changes in snow 485 

melting date in the context of climate warming, we modelled R. aureum distribution 486 

under current and future snowmelt scenarios. The current snowmelt scenario used the 487 

average snowmelt date derived from the GLM result from Section 2.3 Spring snow 488 

cover change. As a simple theoretical advanced snowmelt scenario, we advanced 489 

snowmelt date by 5 days, as it has been observed that snow cover duration has 490 

declined on average by 5 days per decade in mountain ecosystems (Pörtner et al., 491 

2019).  492 

The fractional cover of R. aureum for the year 1988 was used as the response 493 

variable as this species was more likely in equilibrium with snow conditions in 1988 494 

before rapid climate warming. Environmental predictive variables included one snow 495 

variable (i.e., the snowmelt date, supplementary Figure 5, a); one temperature variable 496 

(Land surface temperature data with 30 m resolution derived as the mean of four 497 

Landsat images covering the growing season from June to September in 2019 498 

(downloaded from http://databank.casearth.cn). Landsat based LST data has been 499 

successfully applied in SDM studies even at fine spatial scale (He et al., 2015; 500 

Hernández-Lambraño et al., 2020), as such data can be sued to obtain synoptic, 501 

http://databank.casearth.cn/
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spatially continuous ecological values without interpolation or geographical biases at 502 

varying spatial and temporal resolutions (He et al., 2015). We applied Landsat based 503 

LST data because (1) weather stations are scarce is this region, (2) the widely used 504 

interpolated climate grids (e.g. WorldClim) are unlikely to capture fine spatial scale 505 

characteristics of the climate in mountain ecosystem (Fernandez et al., 2013), (3) the 506 

resolution of Landsat LST could well match other variables used in this study (all at 507 

30 m resolution). Besides, we could also use LST data to focus on spatial variation of 508 

temperature during growing season. We also included one edaphic variable (30 m 509 

resolution, compiled using ArcGIS spatial analysis) derived from an earlier study 510 

(Zong et al., 2014) which identified the distribution of the two dominant types of soil 511 

(tundra soil and volcanic ash) in the region, and 11 topographic variables from the 512 

SRTM DEM data (30 m resolution), representing various ecological conditions that 513 

are known to have important effects on vegetation in our study area (Zong et al., 514 

2014), using ArcGIS spatial analysis (Supplementary Table 3). 515 

To eliminate multi-collinearity caused by the correlation among explanatory 516 

variables, only the variables with weak correlations (Pearson correlation coefficient < 517 

0.3) were imported into the model (Zuur et al., 2010). Plane curvature, profile 518 

curvature, surface relief and roughness were thus excluded. Since spatial 519 

autocorrelation may inflate statistical significance due to the similarity between 520 

neighboring pixels, we applied the incremental spatial autocorrelation method (Lu et 521 

al., 2019) from the ArcGIS toolbox to determine the appropriate sampling distance 522 

(120 m) in this study.  523 
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We parameterized SDMs within the BIOMOD2 framework in the R modeling 524 

environment (Thuiller et al. 2009). To decrease the algorithm-based error, we applied 525 

four modelling methods (generalized linear model, GLM; multiple adaptive 526 

regression splines, MARS; flexible discriminant analysis, FDA; generalized boosted 527 

method, GBM). The GLMs were fitted including quadratic terms with a setting of 528 

interaction.level = 1. The GBMs were fitted using out-of-bag estimates of model 529 

improvement and the n.trees set as 1000. We used default settings for the MARS and 530 

FDA models. For each method, parameterization was replicated three times using 531 

random split-sampling (70% training and 30% evaluation). For each replicate, model 532 

accuracy was evaluated by means of the Area Under Curve (AUC) and the True Skill 533 

Statistic score (TSS). The models provide the probability of R. aureum for each cell 534 

that was then binarized by thresholding the probability according to a level that 535 

maximizes the TSS value of the predictions. In order to decrease the importance of a 536 

single modelling method, we applied the ensemble prediction method that judges that 537 

the species is present in a certain pixel if at least three of the four methods predicted 538 

an occurrence (Niittynen and Luoto, 2018).  539 

2.7 Effects of snow cover change on the fractional cover change of R. aureum  540 

We used a GLM to test the effects of snow cover change on the fractional cover 541 

change of R. aureum. As a response variable, we used the fractional cover change of R. 542 

aureum derived from section 2.5.2. Environmental predictive variables included one 543 

snow variable (i.e., snow cover trend derived from section 2.4, step 3), the 544 

aforementioned Land surface temperature and 11 topographic variables. We also 545 
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conducted assessments of multi-collinearity and spatial autocorrelation. The statistics 546 

were performed in R (R Core Team) and ArcGIS environment.  547 

 548 

  549 
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3. Results 550 

 551 

3.1 Spring snow cover change 552 

The alpine tundra of the Changbai Mountains has warmed significantly at an 553 

average rate of 0.028 °C/year from 1959 to 2017 (P<0.001, Supplementary Fig. 3 and 554 

4). Accordingly, snow cover decreased in most of the alpine tundra (Fig. 6) at 555 

elevations below 1950 m and in the elevation range of 2050 to 2250 m. An increasing 556 

trend of snow cover occurred not only at high elevations (above 2300 m) but also 557 

around an elevation of 2000 m. The average snowmelt date of our study area was 25 558 

April (DOY = 115), ranging from mid-March (DOY = 78) to early June (DOY = 152). 559 

The snowmelt season thus lasts more than three months (Supplementary Fig. 5).   560 

 561 

Figure 6. Pixel-level trends in snow cover (i.e., the coefficient of the ‘year’-term in 562 

the generalized linear model) during the snowmelt period (1 April to 15 June) along 563 

elevation gradients in the alpine tundra of the Changbai Mountains from 1965 to 564 

2019.  565 

 566 
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3.2 Distribution changes of Rhododendron aureum  567 

During the past 30 years, the fraction cover of R. aureum experienced greater loss 568 

than gain (Tab. 1). The fractional changes of R. aureum cover were confirmed by the 569 

dynamic of R. aureum fraction cover at about five years’ interval (Fig. 7). In general, 570 

fraction cover loss of R. aureum (8.66 km2 area with cover loss of 50% or more and 571 

10.29 km2 of area with loss of -50% to -10%) was about twice as much as gain (5.57 572 

km2 of area with cover gain of +50% or more and 2.54 km2 of area with gain of +10% 573 

to +50%) (Tab. 1).  574 

 575 

Table 1. Change in fraction cover of Rhododendron aureum between 1988 and 2019 576 

 Change in fraction cover of Rhododendron aureum 

Fractional change < -50% -50% – -10% -10% – +10% +10% – +50% > +50% 

Area (km2) 8.66 10.29 3.45 2.54 5.57 

 577 

 578 

Figure 7. R. aureum fraction cover dynamics for increasing fraction cover (top four 579 
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panels) and decreasing cover (bottom four panels) pixels for the years 1988, 1992, 580 

2001, 2004, 2009, 2013, and 2019.  581 

 582 

Along the elevation gradient, R. aureum expanded at the leading edge (above 2300 m, 583 

Fig. 8) and retracted at the trailing edge (below 2000 m, Fig. 8).  Interestingly, 584 

increasing and decreasing cover of R. aureum corresponded well with the increasing 585 

and decreasing trend of snow cover (Fig. 6) along the elevation gradient. This was 586 

confirmed by the GLM results (Tab. 2) indicating that the snow cover trend was the 587 

explanatory variable with the most influence on the change of fraction cover for R. 588 

aureum. 589 

  590 

Figure 8. Change in fraction cover of Rhododendron aureum along elevation gradient 591 

between 1988 and 2019. Linear unmixing model was applied to extract fractional 592 

cover of R. aureum in 1988 and 2019.  593 

Table 2. Results of the generalized linear model for predicting pixel-level change in 594 

fraction cover of Rhododendron aureum as a function of the snow cover trend, 8 595 

topographic variables, and one temperature variable. Only variables that contributed 596 
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significantly (P<0.001) to the model fit were included in the final model. LST = Land 597 

surface temperature.  598 

The change in fraction cover of R. aureum 

Variable Coefficients t value P 

Snow cover trend 0.747 6.097 *** 

LST -0.017 -5.534 *** 

Slope -0.001 -3.292 *** 

Aspect 0.001 16.232 *** 

Elevation -0.0002 -10.261 *** 

Intercept 1.842 16.893 *** 

 599 

 600 

3.3 Distribution changes of Rhododendron aureum under future snowmelt scenarios 601 

R. aureum preferred relatively late snowmelt regimes, with high occurrences 602 

predicted from DOY = 110 (i.e., 20 April) onwards (Fig. 9, a). Among various 603 

environmental variables (Fig. 9, b), snowmelt date was the most important predictor 604 

for R. aureum distribution, indicating a key role for snow in determining its 605 

distribution change. The species distribution models showed a good average model fit 606 

(area under curve (AUC) = 0.858; true skill statistics (TSS) = 0.578) for predicting R. 607 

aureum distribution (Supplementary Fig. 6). Our models suggested that, under a 608 

simplified future snowmelt scenario (i.e., five days advanced snowmelt across the 609 

whole study area), habitat loss of R. aureum could reach 75% (from 59.13 to 14.94 
610 

km2, Fig. 10, c), especially at low elevations (Fig. 10, b). The optimum elevation of R. 611 

aureum moved to higher elevations under the future snowmelt scenario, indicating 612 
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further upward range shifts of this shrub species in a climate with advanced snowmelt, 613 

when keeping all other factors constant (Fig. 10, d). 614 

 615 

Figure 9. The snowmelt regime preference of the evergreen shrub, Rhododendron 616 

aureum. The response curve as a function of snowmelt day (DOY = day of year) is 617 

based on a generalized linear model. The vertical lines on the x-axis in a) indicate 618 

distribution density of R. aureum. The variable importance scores are mean values 619 

from all four species distribution modelling methods. LST indicates land surface 620 

temperature derived from Landsat imagery. TWI indicates topographical wetness 621 

index.   622 

 623 



34 

 

 624 

Figure 10. The projected distributions of Rhododendron aureum (represented in green) 625 

under current (a) and future snowmelt scenarios (b) based on a species distribution 626 

model. The number of pixels (c) and distribution frequencies along the elevation 627 

gradient (d) of R. aureum as predicted under scenarios for the current snowmelt 628 

regime and a future regime. The dashed lines indicate the elevation optimum in each 629 

scenario.  630 

 631 

 632 

 633 

 634 
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4. Discussion 635 

4.1 Half a century of spring snow cover change 636 

Warming in the alpine tundra of the Changbai Mountains (0.0278 °C/year during 637 

the period 1959 to 2017) has been comparable to trends observed for other mountains 638 

in the northern hemisphere over similar periods, e.g., in North America (0.035 °C/year 639 

on Mt. Washington, NH, USA), the European Alps (0.03 °C/year on Mt. Sonnblick, 640 

Austria) and Asia (0.035 °C/year on Mt. Fuji, Japan) (Pörtner et al., 2019). In line 641 

with the warming trend, snow cover during snowmelt period (1 April to 15 June) 642 

showed a decreasing trend for most of the study area during the last 50 years, which 643 

supported the recent assessment report about the cryosphere indicating that mountain 644 

snow cover has declined remarkably and globally (Pörtner et al., 2019). In general, 645 

fine-scale remote sensing records are considered insufficiently long to assess alpine 646 

snow cover trends (Bormann et al., 2018). However, by taking advantage of the 647 

declassified high-resolution KeyHole data starting in the 1960s, we demonstrate a 648 

practical way to build a snow dataset for alpine areas spanning over half a century. 649 

Snow classification accuracies of the images employed in this study were > 0.94, 650 

much higher than those from combined mid- and coarse-resolution datasets (Dietz et 651 

al., 2012). The resolution discrepancy between high- and mid-resolution data was < 652 

30 m, much lower than those (> 200 m) between mid- and coarse-resolution data. 653 

Thus, this dataset could match fine-scale snow cover change in heterogeneous alpine 654 

landscapes much more closely than previous alpine snow datasets with a 655 

hundred-meter level resolution (Molotch and Margulis, 2008; Wan et al., 2014; Wang 656 
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et al., 2017).  657 

To the best of our knowledge, the snow dataset we built was the first one based 658 

on remote sensing to span 50 years for alpine ecosystems. Other alpine snow products 659 

exist, such as simulated potential snow accumulation patterns calculated from 660 

topographic data (Gottfried et al., 1998; Randin et al., 2009), first snow-free day 661 

extracted from multiple satellite datasets (Dedieu et al., 2016), predicted snow cover 662 

duration of 5 years derived from the Landsat dataset (Carlson et al., 2015), or snow 663 

cover duration (SCD) derived from the SPOT satellite for a period of less than 20 664 

years (Dirnböck et al., 2003). All of these snow products emphasized the importance 665 

of snow in explaining vegetation distributions in cold biomes. The spring snowmelt 666 

period is probably ecologically more relevant than the snow onset in autumn, as 667 

earlier snowmelt has been found to contribute more to a reduction in SCD than late 668 

snow onset (Klein et al., 2016) and is potentially correlated with the number of 669 

freezing days experienced by plants in spring, as well as with growing season length 670 

(Winkler et al., 2018). The main limitation of our snow dataset may be that the snow 671 

variable used here does not incorporate snow depth, although snow depth has been 672 

shown to correlate with SCA in alpine terrain. From this perspective, proper 673 

utilization of synthetic aperture radar data was recommended as auxiliary data. 674 

However, there is always a trade-off between long timespan and high temporal 675 

resolution when analyzing snow dynamics. Nevertheless, further investigation of the 676 

links between snow cover area, snow depth and snowmelt data could prove useful for 677 

understanding (changes in) plant species distributions (Falk et al., 2016).  678 
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 679 

4.2 Links between snow cover and distribution changes of Rhododendron aureum 680 

We found that snowmelt date was the most important predictor for R. aureum 681 

distribution, indicating the important role of snow in determining persistence of this 682 

shrub species in a warming climate. Using an SDM approach, we obtained the snow 683 

response curve of R. aureum and identified its preferred snowmelt regime as those 684 

habitats with snowmelt date starting from 20 April. This analysis supports previous 685 

findings that R. aureum is not a typical frost-tolerant alpine species, yet that it requires 686 

snow cover protection from extreme low temperatures to survive in this alpine tundra 687 

(Liu et al., 2009; Zhang et la., 2010). R. aureum preferred relatively late snow cover 688 

conditions, indicating that their distribution is prone to be affected as climate – and 689 

thus snowmelt dates – changes. Indeed, we have observed changes in R. aureum 690 

distribution following snow cover changes over the last decades. Our models 691 

suggested that R. aureum would further shift the distribution range to higher 692 

elevations under an advanced snowmelt scenario, results in line with field 693 

observations and model predictions that alpine plant species shift their ranges to 694 

higher elevations, with losses at their trailing edge in response to the warming climate 695 

(Gottfried et al., 2012; Lenoir et al., 2008; Rixen and Wipf, 2017; Sandvik and 696 

Odland, 2014). Furthermore, the distribution area of R. aureum would reduce by 75%, 697 

a number significantly higher than the projections for the end of the twenty-first 698 

century (33–55%) from model predictions for alpine plant species in the European 699 

Alps (Dullinger et al., 2012). Note, however, that this is a theoretical prediction under 700 
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a largely simplified scenario in which all other global change factors (e.g., other 701 

influences of temperature and precipitation change) are kept constant.  702 

 Range shifts of alpine plant species under environmental change are driven by 703 

two major processes: the extinction of existing populations at sites that have become 704 

unsuitable and the colonization of sites that become newly suitable (Rumpf et al., 705 

2019). The reduced snow cover area in the Changbai Mountains probably caused the 706 

loss of R. aureum at the trailing edge. At the leading edge, R. aureum colonized areas 707 

with deep snow cover, indicating that the currently snow-rich habitats might be 708 

suitable sites for R. aureum in a warmer climate. Early snowmelt can expose shrubs to 709 

lower spring temperatures and increase the risk of frost damage (Wipf et al., 2006). 710 

Indeed, the European Rhododendron ferrugineum has been shown to rely on snow 711 

cover for protection from frost (Francon et al., 2020). Snow habitats hence provide 712 

microrefugia, buffering against frost damage and protecting Rhododendron at higher 713 

elevations. One limitation of our SDMs is that we don’t have fine resolution 714 

temperature data to match the snowmelt change, which is due to the lack of evenly 715 

distributed and long term in situ temperature observations in this alpine tundra, as it 716 

has been found that high resolution spatial temperature information is helpful to 717 

predict biodiversity change in cold biome (Niittynen et al., 2018). We thus 718 

recommend further investigation of long-term and fine scale temperature observations 719 

for understanding (changes in) plant distributions in alpine ecosystems (Lembrechts et 720 

al., 2019).  721 

Other possible mechanisms underlying R. aureum distribution change could be 722 
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related to summer warming or drought as observed in many arctic and alpine 723 

ecosystems (Berner et al., 2020). However, summer precipitation is fairly high in this 724 

alpine tundra (about 960 mm for four months), and hence might not be the limiting 725 

factor for R. aureum growth. Nevertheless, tree-ring analysis might be a possibility to 726 

disentangle the effects of summer warming and snow cover change. Other causes 727 

such as disturbances are minimal since the area has practically no access for humans, 728 

and there have been no other reported natural disturbances for the past decades.  729 

 730 

4.3 Distribution changes of R. aureum over last decades 731 

The main novelty of our study is that we used the species-specific phenology of 732 

the evergreen shrub R. aureum to identify its cover. We extracted its historical and 733 

current fraction cover distributions from Landsat images by taking advantage of R. 734 

aureum’s greenness in autumn compared with the brownness of surrounding plants in 735 

this study system. The combination of plot-scale field data and the GF-2 image with a 736 

pixel size of 1 m provided sufficient and effective endmembers for the linear 737 

unmixing analysis. In a similar study, Tape et al. (2006) applied repeated 738 

high-resolution aerial photographs to document shrub expansion in the Alaskan Arctic. 739 

In the same region, shrubs could be accurately identified at the treeline ecotone, 740 

where they usually exhibited textures (e.g., high plant height) distinctive from those 741 

of the surrounding vegetation in imagery (Selkowitz, 2010). However, our study 742 

provides an approach to extracting shrubs beyond the treeline by focusing on 743 

phenological anomalies of shrubs rather than texture, thus introducing a novel way to 744 
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study shrub distribution changes in inner Arctic or alpine ecosystems (Bayle et al., 745 

2019; van Lier et al., 2009). Phenological differences in autumn between shrubs and 746 

other plant functional types have long been neglected. So far, using phenology to 747 

identify plant cover has been applied to map expansion processes of invasive plants 748 

(Bradley, 2014; Peterson, 2005; Weisberg et al., 2017). We identified only one study 749 

in which shrubland in the French Alps was successfully extracted by using the 750 

specific phenology of reddening shrubs in autumn based on the red edge band of 751 

Sentinel-2 data (Bayle et al., 2019).  752 

Expansion of deciduous shrubs, such as birch (Betula spp.), willow (Salix spp.), 753 

and alder (Alnus spp.), through infilling of existing patches, an increase in growth, or 754 

an advancing shrubline, i.e., shrubification, was found to contribute to the vegetation 755 

change during past decades (Myers-Smith et al., 2011). However, there is evidence 756 

that evergreen shrubs (e.g., crowberry) are also expanding (Elmendorf et al., 2012; 757 

Klanderud and Birks, 2003; Maliniemi et al., 2018; Vowles and Björk, 2019; Vuorinen 758 

et al., 2017; Wilson and Nilsson, 2009). Thus, the approach introduced in our study is 759 

a promising way to extract the distribution of these evergreen shrubs, if they are 760 

abundant, in Arctic and alpine ecosystems by using autumn NDVI signals. This 761 

knowledge in turn can contribute to an improved understanding of shrub distribution 762 

changes and help to address the complexities of interpreting satellite-spectral and 763 

ground-vegetation greening trends (Myers-Smith et al., 2020). It should be noted that 764 

phenology shift due to climate warming might affect the detection of specific species 765 

especially in alpine ecosystems with sharp environmental gradients in elevation and 766 
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topography (Gottfried et al., 1998). However, warming mostly advanced or delayed 767 

the die-off of other perennial plants by less than a week during the past 30 years (Liu 768 

et al., 2016), suggesting that warming-caused phenology change should not affect the 769 

detection of R. aureum in this study, which had a window of several weeks for 770 

successful detection due to its unique greenness in autumn. Nevertheless, field 771 

phenology observation along elevation gradient could be a good supplementary to the 772 

selection of proper satellite imagery. 773 
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 1137 

List of Figure Captions 1138 

 1139 

Figure 1. Upper Left: location of Changbai Mountains in Northeast China. Lower left: 1140 

The alpine tundra in the study region, extending from 1850 to the summit at 2749 m 1141 

(bottom). The red star represents the location of the climate station at the summit of 1142 

the Changbai Mountains. The yellow line represents the international boundary 1143 

between China and North Korea. Plots for ground truthing are indicated as green 1144 

points. Right: field photos: (A) early autumn, 1 September 2017; (B) spring, 13 June 1145 

2017; and (C) early spring, 22 May 2015, showing the study site landscape at high 1146 

(above 2300 m), mid (2000-2300 m), and low elevations (1850-2000 m), respectively. 1147 

Plant communities with green color in the field photos indicate R. aureum 1148 

communities. Panel (B) shows R. aureum in white bloom. Plant communities with 1149 

yellow and gray color are deciduous shrubs and sedge communities in (A) and herb 1150 

communities in (B) and (C). 1151 

 1152 

Figure 2．Schematic workflow that summarizes data preparation and processing steps, 1153 

including the estimation of Rhododendron aureum fraction cover time series based on 1154 

NDVI from Landsat images and high resolution images and field survey data (left), 1155 

extraction of environmental data, most importantly the assessment of snow cover 1156 

trends and snowmelt date based on various satellite datasets (right), and integration of 1157 

both into two models for R. aureum (bottom). RA = R. aureum. HR refers to high 1158 
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resolution. PPI is the pixel purity index while MNF stands for minimum noise fraction 1159 

transformation with ENVI. LST refers to land surface temperature derived from 1160 

Landsat images. ① NDVI calibration includes orthorectification, atmospheric and 1161 

radiometric calibrations; ② Harmonizations of multi-source images with ENVI; ③ 1162 

C correction method for terrain correction. 1163 

 1164 

Figure 3. True color RGB image of Sentinel-2 (middle and right) and field photos (left) 1165 

taken in the alpine tundra of the Changbai Mountains at peak (a) and end (b) of the 1166 

growing season. Green color at the end of the growing season represents the 1167 

evergreen shrub, R. aureum; the white circle marks a distinctive rock for reference. 1168 

 1169 

Figure 4. Correspondence between plant cover of R. aureum (green color) and herbs 1170 

(brown color, as shown in Figure 1 C) in a 1 m2 field survey plot and the NDVI value 1171 

of a GF-2 high-resolution satellite image (23 September 2017, pixel size = 1 m). 1172 

Number of plots = 165. The lines represent the results from generalized linear 1173 

regressions (the glm function with ‘logit’ link from the ‘MASS’ package in R 1174 

2020).The grey zone indicates the 0.95 confidence interval. 1175 

 1176 

Figure 5. Scatterplot comparing Landsat shrub fraction to high resolution (HR) shrub 1177 

abundance (the proportion of R. aureum footprints in each Landsat pixel). The black 1178 

line represents the linear regression line fitting data that starts from the tipping point 1179 

(0.27) onward. 1180 
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 1181 

Figure 6. Pixel-level trends in snow cover (i.e., the coefficient of the ‘year’-term in 1182 

the generalized linear model) during the snowmelt period (1 April to 15 June) along 1183 

elevation gradients in the alpine tundra of the Changbai Mountains from 1965 to 1184 

2019. 1185 

 1186 

Figure 7. R. aureum fraction cover dynamics for increasing fraction cover (top four 1187 

panels) and decreasing cover (bottom four) pixels for the years 1988, 1992, 2001, 1188 

2004, 2009, 2013, and 2019. 1189 

 1190 

Figure 8. Change in fraction cover of Rhododendron aureum along elevation gradient 1191 

between 1988 and 2019. Linear unmixing model was applied to extract fractional 1192 

cover of R. aureum in 1988 and 2019.  1193 

 1194 

Figure 9. The snowmelt regime preference of the evergreen shrub, Rhododendron 1195 

aureum. The response curve as a function of snowmelt day (DOY = day of year) is 1196 

based on a generalized linear model. The vertical lines on the x-axis in a) indicate 1197 

distribution density of R. aureum. The variable importance scores are mean values 1198 

from all four species distribution modelling methods. LST indicates land surface 1199 

temperature derived from Landsat imagery. TWI indicates topographical wetness 1200 

index.  1201 

 1202 
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Figure 10. The projected distributions of Rhododendron aureum (represented in green) 1203 

under current (a) and future snowmelt scenarios (b) based on a species distribution 1204 

model. The number of pixels (c) and distribution frequencies along the elevation 1205 

gradient (d) of R. aureum as predicted under scenarios for the current snowmelt 1206 

regime and a future regime. The dashed lines indicate the elevation optimum in each 1207 

scenario.  1208 
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