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Abstract 62 

Background: Ambient air pollution exposure has been associated with higher mortality risk 63 

in numerous studies. We assessed potential variability in the magnitude of this association for 64 

non-accidental, cardiovascular disease, respiratory disease, and lung cancer mortality in a 65 

country-wide administrative cohort by exposure assessment method and by adjustment for 66 

geographic subdivisions. 67 

Methods: We used the Belgian 2001 census linked to population and mortality register 68 

including nearly 5.5 million adults aged >30 (mean follow-up: 9.97 years). Annual mean 69 

concentrations for fine particulate matter (PM2.5), nitrogen dioxide (NO2), black carbon (BC) 70 

and ozone (O3) were assessed at baseline residential address using two exposure methods; 71 

Europe-wide hybrid land use regression (LUR) models [100x100m], and Belgium-wide 72 

interpolation-dispersion (RIO-IFDM) models [25x25m]. We used Cox proportional hazards 73 

models with age as the underlying time scale and adjusted for various individual and area-level 74 

covariates. We further adjusted main models for two different area-levels following the 75 

European Nomenclature of Territorial Units for Statistics (NUTS); NUTS-1 (n=3), or NUTS-3 76 

(n=43). 77 

Results: We found no consistent differences between both exposure methods. We observed 78 

most robust associations with lung cancer mortality. Hazard Ratios (HRs) per 10 µg/m3 increase 79 

for NO2 were 1.060 (95%CI 1.042-1.078) [hybrid LUR] and 1.040 (95%CI 1.022-1.058) [RIO-80 

IFDM]. Associations with non-accidental, respiratory disease and cardiovascular disease 81 

mortality were generally null in main models but were enhanced after further adjustment for 82 

NUTS-1 or NUTS-3. HRs for non-accidental mortality per 5 µg/m3 increase for PM2.5 for the 83 

main model using hybrid LUR exposure were 1.023 (95%CI 1.011-1.035). After including 84 

random effects HRs were 1.044 (95%CI 1.033-1.057) [NUTS-1] and 1.076 (95%CI 1.060-85 
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1.092) [NUTS-3]. 86 

Conclusion: Long-term air pollution exposure was associated with higher lung cancer 87 

mortality risk but not consistently with the other studied causes. Magnitude of associations 88 

varied by adjustment for geographic subdivisions, area-level socio-economic covariates and 89 

less by exposure assessment method. 90 

  91 



6 

 

Keywords: 92 

population-based 93 

environmental hazard 94 

exposure assessment 95 

survival analysis 96 

cause-specific mortality 97 

health effects 98 

 99 

Highlights: 100 

Large prospective country-wide cohort study including nearly 5.5 million adults 101 

Non-accidental and cause-specific mortality over long-term ten years follow-up 102 
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1 Introduction 109 

Over the past few years, a relatively large number of studies on the association between long-110 

term exposure to ambient air pollution and mortality has been published (Hoek et al., 2013; 111 

Atkinson et al., 2018; Huangfu and Atkinson, 2020; Chen and Hoek, 2020; Huang et al., 2021). 112 

The majority of studies reported increased mortality risks, although large variation has been 113 

observed in magnitude of the effect estimates both between and within countries (Hoek et al., 114 

2013; Atkinson et al., 2018; Huangfu and Atkinson, 2020; Chen and Hoek, 2020; Huang et al., 115 

2021). Part of this heterogeneity in air pollution epidemiological studies might be explained by 116 

methodological differences in exposure assessment method, study design or statistical data 117 

analysis approach, or by study-specific contextual differences. So far there is little evidence on 118 

how air pollution exposure assessment method affects mortality risk estimates (Yap et al., 2012; 119 

Jerrett et al., 2016; Klompmaker et al. 2020; Samoli et al., 2020; Butland et al., 2020; Gariazzo 120 

et al., 2021). Multicenter studies provide a great opportunity to investigate some of this 121 

heterogeneity. This study forms part of the Effects of Low-level Air Pollution: A Study in 122 

Europe (ELAPSE) project (www.elapseproject.eu) (Klompmaker et al., 2020; Hvidtfeldt et al., 123 

2020), where Belgium is one of the seven participating European countries contributing to the 124 

project with large administrative cohort data. The project’s central approach was to harmonize 125 

to the greatest extent possible exposure assessment, outcome and confounder definitions as well 126 

as statistical methods between different administrative cohorts. Study-specific contextual 127 

heterogeneity is likely to remain notwithstanding large harmonization efforts and may 128 

potentially affect health effect estimates in relation to long-term exposure to air pollution. 129 

Study-specific between-area variability in mortality patterns has been widely observed in 130 

several country-wide studies, including in Belgium (Deboosere and Gadeyne, 2002; Van 131 

Hemelrijck et al., 2016). Air pollution health effect estimates may be affected if broad scale air 132 



8 

 

pollution patterns are correlated to regional mortality patterns. In recent North American cohort 133 

studies, investigators have adjusted for geographic subdivisions of the country to account for 134 

potential variability in spatial patterns (Crouse et al. 2012, 2015; Di et al. 2017). The current 135 

study presents results for the Belgian administrative cohort on the association between long-136 

term exposure to several ambient air pollutants (fine particulate matter (PM2.5), nitrogen 137 

dioxide (NO2), black carbon (BC) and ozone (O3)) and non-accidental, cardiovascular 138 

disease, respiratory disease, and lung cancer mortality during a ten-year follow-up period for 139 

about 5.5 million Belgian adults. The aim of this study was to explore and assess potential 140 

variability in mortality effect estimates by different air pollution exposure assessment methods 141 

and by additional adjustment for geographic subdivisions of the country. 142 

 143 

2 Methods 144 

2.1 Data design and study population 145 

Administrative cohort data was based on the Belgian 2001 census which was linked to 146 

population, emigration and mortality follow-up data for the study period October 1, 2001-147 

December 31, 2011 (10.25 years). Data were made available by the Belgian statistical office 148 

(Statbel) and contained individual information for the entire population officially residing in 149 

Belgium at the time of the census. Individuals were geolocated based on the XY-coordinate of 150 

their residential address at baseline, near-complete with 98.7% of individuals included. All 151 

adults aged 30 and older with complete covariate information were included in the present 152 

study. We excluded about 15% of individuals with missing data on main covariates. 153 

Individual sociodemographic covariates were collected through a census questionnaire at 154 

baseline, and included: age, sex, marital status (single, cohabiting/married, separated/divorced 155 

and widowed), country of origin (local vs foreign), education level (no/primary, secondary and 156 

tertiary), and occupational status (employed/self-employed, unemployed, homemaker and 157 
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retired). Available area-level socio-economic position (SEP) covariates consisted of mean 158 

income (i.e. mean household net taxable income), unemployment (i.e. percentage of working 159 

age population unemployed), low education (i.e. percentage of population with no/primary 160 

education), and ethnicity (i.e. percentage of non-Western migrants). All area-level SEP 161 

indicators were retrieved from the Belgian 2011 census, except for ethnicity which was only 162 

obtainable for the year 2001. Area-level SEP variables were available at two different area-163 

levels: 1) neighbourhood (n=6,344), i.e. geographical units having a size in between those of 164 

census tracts (n=19,781) and local administrative units (LAU) (n=589); and 2) NUTS-3 (n=43), 165 

i.e. as defined by the European Nomenclature of Territorial Units for Statistics (NUTS) 166 

(Eurostat, 2018). Both aforementioned area-level SEP definitions and selected spatial levels 167 

were based on the statistical protocol of ELAPSE (Klompmaker et al., 2020). 168 

 169 

2.2 Air pollution exposure assessment 170 

Air pollution exposure assessment was done using two approaches: Europe-wide hybrid land use 171 

regression (LUR) and Belgian interpolation-dispersion (RIO-IFDM) exposure models. Annual 172 

mean concentrations for different ambient air pollutants (PM2.5, NO2, BC and O3) for the year 173 

2010 were assigned to the residential geocode at baseline (01/10/2001). The measurements for 174 

O3 were obtained by averaging warm season months from April through September. A brief 175 

description of the methodologies of both models is given below and an overview of the 176 

differences can be found in supplementary material (S1).  177 

 178 

2.2.1 European hybrid LUR model 179 

In the framework of ELAPSE, Europe-wide air pollution exposure assessment was developed 180 

and validated following a harmonised protocol, described in detail by de Hoogh et al. (2018). In 181 

brief, hybrid LUR models were developed by combining air pollution monitoring data with 182 
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predictor variables obtained from satellite derived air pollution data, chemical transport model 183 

data, and land cover and road traffic data. Monitoring data for PM2.5, NO2 and O3 warm season 184 

were derived from Airbase version 8 routine data (EEA, 2020; de Hoogh et al., 2016). As Airbase 185 

data were not available for BC, European Study of Cohorts for Air Pollution Effects (ESCAPE) 186 

monitoring data were used instead (Eeftens et al., 2012a; 2012b). Models were developed at a 187 

spatial resolution of 100 x 100 m for the year 2010 (annual mean). Estimates for PM2.5, NO2 188 

and O3 were expressed in micrograms per cubic meter (µg/m3) and for BC in 10−5m−1 (i.e. similar 189 

magnitude compared to BC in µg/m3). 190 

 191 

2.2.2 Belgian RIO-IFDM model 192 

Air quality model exposure predictions for the same pollutants and year were provided by the 193 

Belgian Interregional Environment Agency (IRCEL-CELINE). The estimates were obtained 194 

through the coupling of a spatial interpolation model (RIO) and a dispersion model (IFDM). 195 

The interpolation model uses air quality measurements from fixed measuring stations and 196 

CORINE Land Cover data (EEA, 2019; Hooyberghs et al., 2006). These background results 197 

were combined with a dispersion receptor model using emissions from industrial point and 198 

traffic line sources and meteorological data (Lefebvre and Vranckx, 2013). The results are 199 

modelled on high-resolution grids of 25 x 25 m. Further details regarding the applied model 200 

chain can be consulted in the following technical report by Lefebvre and Vranckx (2013). All 201 

annual mean concentrations were expressed in micrograms per cubic meter (µg/m3). 202 

 203 

2.3 Mortality outcomes 204 

The studied mortality outcomes were identified through the WHO International Classification 205 

of Diseases, Tenth Revision codes (ICD-10) (W.H.O., 2004), based on the selection of the 206 

underlying cause of death on the death certificates. We considered non-accidental (ICD-10: 207 
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A00-R99), cardiovascular disease (ICD-10: I10-I70), respiratory disease (ICD-10: J00-J99), 208 

and lung cancer mortality (ICD-10: C34.0-C34.9). 209 

 210 

2.4 Statistical analyses 211 

We assessed the association between the different air pollutants and mortality outcomes using 212 

Cox proportional hazard models with age as the underlying time scale. Individuals were right 213 

censored when information about their survival time was incomplete, i.e. death to another cause 214 

not under study for cause-specific outcomes, loss to follow-up due to emigration or end of 215 

follow-up (31/12/2011).  216 

Three models with increasing degree of adjustment were defined a priori within the ELAPSE 217 

project (Klompmaker et al., 2020; Hvidtfeldt et al., 2020): model 1 (M1) stratified by sex and 218 

accounted for within-area correlations of the individuals by including a cluster term for 219 

neighbourhood (Therneau, 2015); model 2 (M2) adding to M1 with additional adjustment for 220 

individual sociodemographic covariates (marital status, country of origin, education level and 221 

occupational status), and model 3 (M3) adding to M2 with additional control for area-level SEP 222 

indicators (mean income, unemployment, low education, and ethnicity). In the analysis, area-223 

level SEP was operationalized as the NUTS-3 area-level SEP variable and the deviation 224 

between NUTS-3 and neighbourhood area-level SEP variable. In ELAPSE we a priori decided 225 

to adjust for multiple dimensions of SEP at both a neighbourhood and regional scale to adjust 226 

for potential confounding by socio-economic indicators. 227 

We evaluated the shape of the concentration-response curves for the relationship between the 228 

different air pollutants and mortality outcomes. We specified natural spline plots for three 229 

degrees of freedom (df) (Eisen et al., 2004) and compared the goodness of fit of these models 230 

with the models specified with a linear term (M3) using the Bayesian Information Criterion 231 
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(BIC). No clear deviation from linearity was found based on the model fit nor the splines (i.e. 232 

large uncertainty observed about the shape at low and high end of the distribution as indicated 233 

by the 95% CIs), thus exposure hazard ratios (HR) were reported as a continuous linear term 234 

(Supplementary Figure S1). For linear models, results are presented as HRs with 95% CIs using 235 

pollutant-specific increments based on the ESCAPE project: 5 µg/m3 for PM2.5, 10 µg/m3 for 236 

NO2, 0.5 10−5m−1 (hybrid LUR) or 0.5 µg/m3 (RIO-IFDM) for BC, and 10 µg/m3 for O3. 237 

Based on the single pollutant main model (M3), we specified two-pollutant models where 238 

pollutants within the same exposure model (i.e. hybrid LUR and RIO-IFDM) were 239 

simultaneously entered in the model to assess potential co-pollutant confounding. 240 

In additional analyses, we specified two alternative mixed-effect Cox models with random 241 

intercept. Both included additional levels of spatial correlation to account for potential 242 

differences in mortality rate between geographical areas not accounted for in the main model. 243 

The first model adjusted for both neighbourhood and large geographical NUTS-1 area-level 244 

(n=3), whereas the second model adjusted for both neighbourhood and NUTS-3 area-level 245 

(n=43). To explore potential effect modification, we included multiplicative interaction terms 246 

into our main model between each of the pollutants and age (<65 years or >65 years), and 247 

education level (no/primary education, secondary education or tertiary education). We 248 

evaluated the goodness of fit of models with and without interaction term using the Wald test. 249 

As sensitivity analyses, we repeated M1 with the full population sample (i.e. complete cases 250 

analysis using only M1 covariates) and compared these with the reduced sample of the main 251 

model (i.e. complete cases after including M3 covariates). We further evaluated the consistency 252 

of our effect estimates to area-level SEP adjustment in our main model (M3) by specifying 253 

models where each of the four available area-level SEP indicator was adjusted for separately 254 

instead of combined. Additionally, we indirectly adjusted main model HRs to account for 255 

important missing health-related behavioral indicators in the census in relation to mortality risk. 256 
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We used the method proposed by Shin et al. (2014) to apply indirect adjustment for both 257 

smoking status (current, former or never) and body mass index (BMI) (underweight <18.5, 258 

normal 18.5-24.9, overweight 25-29.9 or obese >30). In brief, the indirect adjustment method 259 

extracts ancillary information on these health-related behavioral indicators from a dataset 260 

representative of the study population. We obtained the Belgian 2001 Health Interview Survey 261 

(HIS) (http://www.healthsurvey.be) matching with the baseline year of the administrative 262 

cohort. The HIS also included the same individual and area-level covariates as in our main 263 

model, with the exception of marital status which was not available. We assigned identical 264 

exposure models to the HIS participants, following the same procedure as previously described 265 

in section 2.2. We then ran multivariate linear regression models with the harmonized HIS data 266 

to retrieve the estimates based on the association between the air pollutants and the available 267 

health-related behavioral indicators. The indirect adjustment method also uses estimates based 268 

on the association between the health-related behavioral indicators and the different mortality 269 

outcomes under study, which have been retrieved from ELAPSE pooled cohort analysis. More 270 

information on the applied indirect adjustment method (Shin et al., 2014) or the ELAPSE 271 

pooled dataset (Brunekreef et al., 2021) can be found elsewhere. 272 

Statistical significance was set at p-value < 0.05. Statistical analyses and exposure data linkages 273 

were performed in R version 3.4.0 (R Core Team 2019) and RStudio (RStudio Team, 2019) 274 

using the following packages: survival (Therneau, 2015), coxme (Therneau, 2018), ggplot2 275 

(Wickham, 2009), data.table (Dowle and Srinivasan, 2017), gdalUtils (Greenberg and 276 

Mattiuzzi, 2015), raster (Hijmans, 2016), rgdal (Bivand et al., 2017), and base and dependency 277 

packages. 278 

 279 

3 Results 280 

3.1 Study population and air pollution exposure 281 
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The included study population consisted of 5,474,470 adults, with a total of 54,574,471 person-282 

years and mean follow-up period of 9.97 years (Table 1). The number of men and women was 283 

nearly equal with a mean age at baseline of 52.6 years. The majority of subjects were born in 284 

Belgium (96.6%), were cohabiting/married (68.3%), had obtained secondary education level or 285 

higher (76.3%), and were employed (53.3%) at the time of the census. We observed 707,138 286 

individuals who died from non-accidental causes of which 33.2% from cardiovascular disease, 287 

11.6% from respiratory disease, and 7.4% from lung cancer mortality. 288 

The exposure distribution and pairwise correlations for the different pollutants are summarised 289 

in Table 2, Supplementary Table S1 and Supplementary Figures S2-S3. For all four pollutants, 290 

median values were higher in hybrid LUR compared to RIO-IFDM exposure models, whereas 291 

the interquartile range (IQR) was moderately lower in hybrid LUR models (Table 2). Lower 292 

variability of the hybrid LUR model is particularly reflected in the lowest and highest 293 

percentiles of the distributions, whereas the range of observed concentrations was wider for all 294 

different pollutants in the RIO-IFDM model (Supplementary Figure S2). The broad spatial 295 

patterns of exposure distributions agreed quite well between both exposure models for all 296 

pollutants (Supplementary Figure S3). 297 

Pearson correlations between hybrid LUR and RIO-IFDM models were 0.64, 0.86, 0.82 and 298 

0.76 for PM2.5, NO2, BC and O3, respectively (Supplementary Table S1). Generally, correlations 299 

between pollutants were stronger in the RIO-IFDM compared to hybrid LUR exposure model 300 

(e.g. 0.83 vs 0.62 between PM2.5 and NO2, respectively). Correlations between different 301 

pollutants were moderate to high, especially between NO2 and BC. Also, expectedly, O3 was 302 

negatively correlated with all other pollutants. 303 

3.2 Association between air pollution and mortality 304 

3.2.1 Main analyses 305 



15 

 

Hazard ratios (HRs) from single-pollutant models with increasing confounder adjustment for 306 

different mortality outcomes under study are presented in Figure 1 and Supplementary Table 307 

S2. HRs were sensitive to incremental adjustment for potential confounders. Overall, hazard 308 

ratios increased after individual level covariate adjustment (M2) for PM2.5, NO2 and BC. After 309 

area-level SEP covariate adjustment (M3), HRs mostly attenuated, except for associations with 310 

PM2.5 where HRs generally increased. In single pollutant main models (M3), we found small 311 

HRs both above and below unity with differing patterns depending on the studied outcome. 312 

Main model HRs ranged between 0.975 and 1.060 (Figure 1 and Supplementary Table S2). For 313 

non-accidental mortality we only found a significant association for PM2.5 with the hybrid LUR 314 

model (HR: 1.023, 95%CI 1.011-1.035). Observed HRs for cardiovascular mortality were 315 

mostly below unity, except for O3 where HRs were above unity. For both respiratory and lung 316 

cancer mortality, HRs were mainly larger than unity, with strongest HRs observed with NO2 317 

and BC. HRs between hybrid LUR versus RIO-IFDM exposure models generally agreed for 318 

the different outcomes, although stronger estimates were mainly found in hybrid LUR models 319 

(Supplementary Table S3 with M3 HRs per IQR increase). The difference in HRs between the 320 

hybrid LUR and RIO-IFDM model exposures was larger in the fully adjusted model (M3) than 321 

in the age and sex only model (M1). 322 

 323 

Our main results were relatively robust after further adjustment in two-pollutant models (Table 324 

3). However, interpretation of these estimates must be with caution due to potential 325 

multicollinearity, especially between NO2 and BC. The association between non-accidental 326 

mortality and PM2.5 remained and became slightly stronger after adjustment for NO2, BC or 327 

O3. Associations with NO2 became stronger after adjustment for O3. Associations with O3 328 

became larger than unity and significant after adjustment for the other pollutants with the 329 

hybrid LUR exposure model. For cardiovascular mortality, negative associations with O3 330 
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remained significant only after adjustment for PM2.5 in hybrid LUR and BC in RIO-IFDM 331 

exposure models. The significant inverse associations in single pollutant models approached 332 

unity after adjustment for O3. Associations with lung cancer mortality remained in both hybrid 333 

LUR and RIO-IFDM exposure models for NO2 and BC after adjustment for other pollutants, 334 

except for BC after NO2 adjustment. Associations in two-pollutant models were most notable 335 

in both respiratory and lung cancer mortality where HRs generally were stronger after 336 

adjustment for O3, in addition to higher estimates for O3.  337 

 338 

3.2.2 Additional analyses 339 

In additional analysis, we further accounted for between-area variability by including a random 340 

intercept in our main models for neighbourhood and NUTS-1 (n=3) or neighbourhood and 341 

NUTS-3 area-level (n=43) (Figure 1 and Supplementary Table S4). Specification of random 342 

effects with NUTS-1 area-level only mildly affected HRs, with the exception of non-accidental 343 

mortality where associations between PM2.5, NO2 and BC became larger than unity and 344 

statistically significant, albeit with small HRs. Estimates were influenced more when allowing 345 

for random effects with the spatially more detailed level of NUTS-3, and generally resulted in 346 

substantially larger HRs, mainly for associations with PM2.5. Overall, most HRs that were above 347 

unity in our main model (M3) became stronger for PM2.5, NO2 and BC. HRs in models with 348 

aforementioned pollutants that were lower than unity lost statistical significance or became larger 349 

than unity with increasing degree of area-level adjustment. HRs for associations with O3 became 350 

inversely statistically significant with increasing area-control for non-accidental, respiratory and 351 

lung cancer mortality. Associations with O3 and cardiovascular mortality did not retain statistical 352 

significance. Also, differences in effect estimates between the two exposure assessment 353 

methods became smaller and more stable when introducing random effects with NUTS-1 or 354 

more pronouncedly including the spatially more refined NUTS-3 area-level. 355 
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Effect modification analyses by age indicated stronger associations for all mortality outcomes 356 

under study with PM2.5, NO2 and BC in younger age (<65 years), and with O3 in older age (>65 357 

years) (Supplementary Table S5). Observed effect modification patterns by education level 358 

were overall suggestive of stronger associations for PM2.5, NO2 and BC among individuals with 359 

tertiary education (Supplementary Table S5). 360 

 361 

3.2.3 Sensitivity analyses 362 

Effect estimates for M1 including the full population sample (i.e. individuals without any 363 

missing value for air pollution exposure, age and sex) were almost identical for non-accidental 364 

and cardiovascular mortality and slightly stronger for respiratory and lung cancer mortality, 365 

although very similar compared to the reduced sample (i.e. with no missing additional 366 

covariates) used in the main models (Supplementary Table S6).  367 

HRs were sensitive to the inclusion of different area-level SEP covariates (Supplementary Table 368 

S7). When adjusting separately for each area-level SEP variable, HRs differed in both directions 369 

from M2 and the main model (M3; i.e. all available area-level SEP indicators combined). For 370 

example, for non-accidental and respiratory mortality in model SEP3, effects were downward for 371 

PM2.5 and upward for NO2 compared to the main model. The observed sensitivity was less for lung 372 

cancer mortality where HRs were larger. No substantial differences were observed between the 373 

different exposure models. 374 

Study population characteristics between cohort and survey data were fairly similar (Supplementary 375 

Table S8), suggesting the use of the survey for the retrieval of ancillary information to be adequate. 376 

Indirect adjusted HRs for smoking status and BMI were generally higher in all mortality outcomes 377 

and for both exposure models. Strongest effect estimates were consistently observed in mortality 378 

associations with PM2.5 (Supplementary Table S9).  379 

 380 
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4 Discussion 381 

We observed associations between long-term exposure to ambient air pollution and mortality 382 

risk for natural and cause-specific mortality outcomes. Effect estimates were sensitive to 383 

exposure assessment method, additional adjustment for geographical subdivisions (NUTS-1 or 384 

NUTS-3) of the country and differential adjustment for area-level socio-economic covariates. 385 

Mortality risk in relation to ambient air pollution was suggested to be highest among individuals 386 

younger than 65 years at baseline or with tertiary education. Overall, we observed most robust 387 

associations with lung cancer and both NO2 or BC for both exposure methods, independently 388 

of alternative model specifications. Observed consistency of aforementioned results among 389 

exposure methods is an important finding, as each method may incorporate different degrees of 390 

measurement error. These potentially introduce bias to health effect estimates of which 391 

magnitude and direction is hard to quantify. 392 

To our knowledge, only four other studies systematically compared potential heterogeneity in 393 

effect estimates using different exposure assessment methods when evaluating the association 394 

between long-term exposure to ambient air pollution and various mortality outcomes using 395 

cohort data (Yap et al. 2012; Jerrett et al., 2016; Klompmaker et al. 2020; Gariazzo et al., 2021). 396 

All four aforementioned studies also detected variation in the effect estimates in terms of 397 

magnitude, direction or statistical significance depending on the applied exposure assessment 398 

method. In our study, observed variation in effect estimates only seemed to differ to a small 399 

degree between exposure models and might be explained by methodological differences 400 

(supplementary material S1). Although both models were of similar fine-scale spatial 401 

resolution, we generally found somewhat stronger associations with lowest compared with 402 

highest resolution models (100 x 100 m for hybrid LUR and 25 x 25 m for RIO-IFDM, 403 

respectively). These findings agree with those recently obtained by Gariazzo et al. (2021) for 404 

associations between both coarse PM or NO2 and non-accidental, respiratory disease and 405 
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cardiovascular disease mortality.  406 

The study of Klompmaker et al. (2020), using Dutch administrative cohort data, was also part 407 

of the ELAPSE project. In line with expectations, our study similarly found moderate 408 

correlations for PM2.5 and relatively strong correlations for NO2 and BC between different 409 

exposure methods (Klompmaker et al. 2020). Comparably, differences in HRs for both NO2 410 

and BC between exposure models were smaller in minimally adjusted models (M1; i.e. 411 

including age and sex) versus fully adjusted models (M3), reflecting differential correlation 412 

patterns between pollutants and area-level SEP. Further, comparison of effect estimates based 413 

on the same hybrid LUR exposure model and non-accidental mortality were almost identical 414 

for associations between non-accidental mortality and PM2.5 [HR 1.023 (95%CI 1.011-1.035) 415 

for the current (Belgian) and HR 1.030 (95%CI 1.019-1.041) for the Dutch administrative 416 

cohort (Klompmaker et al. 2020)]. Overall observed patterns with hybrid LUR exposure 417 

methods were similar in both the Belgian and Dutch administrative cohort, where strongest 418 

associations were observed for lung cancer and weakest for cardiovascular mortality 419 

(Klompmaker et al. 2020).  420 

When study-specific between-area variability was additionally accounted for, associations in 421 

our study between PM2.5, NO2 and BC and mortality became stronger; hence, indicating that 422 

potential residual confounding does not necessarily lead to effect estimates biased upwards. 423 

This finding is consistent with a review reporting that more complete adjustment for area-level 424 

indicators tended to increase air pollution effect estimates rather than decrease (Vodonos et al., 425 

2018). In Canadian cohort studies (Crouse et al., 2012 and 2015), HRs also increased after 426 

adjustment for large geographical area of the country. Additional adjustment for geographical 427 

subdivisions (neighbourhood in addition to NUTS-1 or NUTS-3), reflected broad-scale spatial 428 

variation in health due to factors other than air pollution or included socio-economic covariates 429 

at individual and area-level. Previous research on spatial variability in mortality patterns in 430 
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Belgium identified a clear north-south gradient across the country, where mortality rates 431 

generally are highest in the south and in former industrial areas (Deboosere and Gadeyne, 2002; 432 

Van Hemelrijck et al., 2016). Other possible explanations for this geographic variation in health 433 

status have been proposed, such as differences in diagnostic and therapeutic practices, cultural 434 

and health-related behaviours and historical context (Deboosere and Gadeyne, 2002; Van 435 

Hemelrijck et al., 2016). Although we aimed to maximise the number of available relevant 436 

covariates in our study, no data on these specific factors was available for linkage to the Belgian 437 

administrative cohort. Therefore, we recognise that some important unobserved residual 438 

confounding may remain. With regard to country-wide spatial trends of air pollution, the 439 

aforementioned north-south gradient is inverse: observed pollutant levels are highest in the 440 

north and decrease towards the south of the country (Supplementary Figure S3). In 441 

consequence, additional adjustment for between-area variability as random effects in our main 442 

model might have accentuated the generally small exposure contrasts between different area-443 

levels (neighbourhood in addition to NUTS-1 or NUTS-3). 444 

Consistent with the majority of prior research evaluating effect modification by age in the 445 

association of long-term exposure to air pollution (Huangfu and Atkinson, 2020; Chen and 446 

Hoek, 2020), our study confirmed earlier findings showing higher mortality risk in younger 447 

individuals (<65 years) with PM2.5, NO2 and BC. Current evidence on potential effect 448 

modification by education level with these pollutants is still limited and inconclusive. Two 449 

other participating administrative cohorts in the ELAPSE project evaluated effect modification 450 

by education level (Brunekreef et al., 2021). In accordance with our study findings, the Swiss 451 

cohort also detected strongest associations among higher educated compared to lower educated 452 

with PM2.5, NO2 and BC. Contrarily, the observed pattern was opposite in the Norwegian 453 

cohort. Exposure distributions of studied pollutants were nearly identical between different 454 

population subgroups by age or education level. Health and mortality risks are known to be 455 
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generally higher among individuals with lower versus higher education levels, which is often 456 

referred to as the social gradient in health (Wilkinson and Marmot, 2003). This is also true for 457 

our study, where we found relative mortality risks to increase two- to three- fold between each 458 

category of education level. The social gradient among population subgroups has been 459 

attributed to several underlying health determinants, such as differences in health-related 460 

behaviors (e.g. tobacco and alcohol use, dietary habits or physical activity) or differential access 461 

to important resources (e.g. access to health care or basic housing conditions). While in our 462 

study we only observed higher mortality risks among younger or higher educated individuals, 463 

presumed mortality risks among older or lower educated individuals in relation to long-term 464 

exposure to air pollution may also be detected if other, potentially more influential health 465 

determinants could be mitigated. We speculate that the absence of such determinants in our data 466 

might partially explain observed null-trends for cardiovascular mortality in our main model.  467 

When disentangling sensitivity of various area-level SEP indicators into separate models, we 468 

observed heterogeneity of patterns in effect estimates for different pollutants and mortality 469 

outcomes. This finding points to the multiplicity of the construct of (area-level) SEP, as well as 470 

its complex interplay with different air pollutants. Consequently, comprehensive explanation is 471 

not straightforward and deserves to be addressed further in future studies focussing on health 472 

and environmental inequalities. 473 

Previous studies on the health effects of air pollution emphasised the importance of adjustment 474 

for SEP indicators at both individual and area-level since associations with health outcomes 475 

seemed to be independent (Roux, 2007; Temam et al., 2017; Vodonos et al., 2018). 476 

Additionally, it has been argued that adjustment for area-level SEP complementary to 477 

individual SEP might be of particular interest in studies where individuals’ geographic location 478 

is important (Galobardes et al., 2007). Also, the inclusion of various SEP indicators to represent 479 

its different dimensions was suggested to be important (Galobardes et al., 2007; Pinault et al., 480 
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2016). Given the complexity of SEP and in order to reduce confounding as much as possible, our 481 

main model (M3), as has been defined a priori within the ELAPSE project, adjusted for as many 482 

individual and area-level SEP indicators as available. Although concerns for potential over-483 

adjustment might be valid, a recent meta-analytic review on associations between PM2.5 and 484 

several mortality outcomes observed that additional adjustment for area-level SEP unlikely 485 

results in upward bias (Vodonos et al., 2018). These findings are in line with our study, where 486 

effect estimates for PM2.5 increased after area-level SEP adjustment with non-accidental 487 

(hybrid LUR), respiratory disease (hybrid LUR and RIO-IFDM) and lung cancer mortality 488 

(RIO-IFDM). However, we did not observe a similar pattern for the other pollutants under study.  489 

Our study includes a number of limitations. First, and potentially most important, our study lacked 490 

individual information on health-related behaviors, such as tobacco and alcohol use, dietary habits 491 

or physical activity, as these have been identified as important determinants of mortality risk. 492 

However, we addressed this limitation, as far as possible, by indirectly adjusting our main models 493 

with information on smoking status and BMI using a survey representative of the study population. 494 

Such adjustment resulted mainly in stronger mortality associations with PM2.5 for studied outcomes. 495 

Lack of adjustment for smoking status and BMI could not further explain observed weaker findings 496 

for cardiovascular mortality, nor could it explain apparent stronger findings for lung cancer 497 

mortality. A recent meta-analysis of cohort studies by Atkinson et al. (2018) also reported strongest 498 

associations with NO2 and lung cancer. Another limitation of our study is that only time-fixed 499 

exposure for the year 2010 could be obtained for both exposure models. Although a decreasing 500 

trend in air pollution levels has been observed across Europe over the last years, we assumed its 501 

spatial distribution remained relatively stable over the follow-up period. Higher air pollution levels 502 

presumably result in larger exposure contrasts towards baseline. As such, using exposure for prior 503 

follow-up years may attenuate observed HRs, although this could not be evaluated. Additionally, 504 

individual and area-level covariates were not available for different time points over the follow-up 505 
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period, which is a common limitation in most administrative cohorts. Furthermore, updates on 506 

residential history were not obtainable either.  507 

 508 

5 Conclusion 509 

Long-term term exposure to ambient air pollution was associated with higher mortality risk 510 

among nearly 5.5 million Belgian adults. We observed variability in the strength of our effect 511 

estimates by additional adjustment for geographic subdivisions of the country, area-level SEP 512 

covariates and to a limited extent exposure assessment method. Most robust and consistent 513 

associations were found between both NO2 or BC and lung cancer mortality. Future studies 514 

should apply caution and carefully evaluate analytic strategies as exposure assessment method, 515 

different model specifications and covariate availability might influence both magnitude and 516 

direction of health effect estimates related to long-term air pollution exposure. 517 

 518 
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