
ANTWERP UNIVERSITY

DOCTORAL THESIS

On the Evolvability of the TCP-IP Based
Network Firewall Rule Base

Author:
ir Geert Haerens

Supervisor:
Prof. Dr. ir Herwig Mannaert

A thesis submitted in fulfillment of the requirements
for the degree of Doctor in Applied Economics

in the

Management Information Systems

November 14, 2021

http://www.uantwerpen.be
http://www.johnsmith.com
http://www.jamessmith.com
http://department.university.com

iii

Declaration of Authorship
I, ir Geert Haerens, declare that this thesis titled, “On the Evolvability of the TCP-
IP Based Network Firewall Rule Base” and the work presented in it are my own. I
confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:10/11/2021

v

“Things are not as simple as they look in reality.”

Prof. Ann Haegemans, somewhere in time.

“It’s been a long road.
Getting from there to here.
It’s been a long time.
But my time is finally near.
I will see my dream come alive at last.
I will touch the sky.
And they’re not gonna hold me down no more,
No they’re not gonna change my mind.

’Cause I’ve got faith of the heart.
Going where my heart will take me.
I’ve got faith to believe.
I can do anything.
I’ve got strength of the soul.
No one’s gonna bend or break me.
I can reach any star.
I’ve got faith.
Into the heart.
”

From "Star Trek Enterprise" - lyrics by Diane Warren - music by Russel Watson

vii

ANTWERP UNIVERSITY

Abstract
Faculty of Business and Economics
Management Information Systems

Doctor in Applied Economics

On the Evolvability of the TCP-IP Based Network Firewall Rule Base

by ir Geert Haerens

A firewall is an essential network security component. The firewall rule base, the
list of filters to be applied on network traffic, can have significant evolvability issues
in a context where companies consider their firewall as complex. While sufficient
literature exists on how to analyze a rule base, little research is available on how to
properly construct a rule base upfront which prevents the occurrence of evolvability
issues. According to Normalized Systems theory, a system is unstable under change
if changes require an effort that is proportional to the type of change and the size
of the system. A system that is unstable under change is considered non-evolvable.
The issue with firewall changes relates to this instability under change. By analyz-
ing the root cause of the evolvability issues and proposing design criteria making
use of Normalized Systems theory, we attempt to solve the evolvability issues of
TCP/IP-based firewalls. This work presents a set of design criteria to create an ex-
ante proven evolvable rule base, as well as an algorithm which performs an essential
step in converting an existing non-evolvable rule base into an evolvable rule base.

HTTP://WWW.UANTWERPEN.BE
http://faculty.university.com
http://department.university.com

ix

UNIVERSITEIT ANTWERP

Abstract
Faculteit Bedrijfswetenschappen en Economie

Beleidsinformatica

Doctor in de Toegepaste Economische Wetenschappen

Over de Evolueerbaarheid van de TCP-IP Gebaseerde Netwerk Firewall
Configuratie

door ir Geert Haerens

De firewall is een essentiële beveiligingscomponent van bedrijfsnetwerken. De fire-
wall rule base, zijn configuratie, bevat een lijst met regels volgens dewelke netwerkver-
keer moet worden gefilterd. Deze configuratie kan ernstige evolueerbaarheidspro-
blemen hebben die ertoe leiden dat bedrijven hun firewall als een complex systeem
gaan zien. Alhoewel er voldoende literatuur bestaat over hoe een configuratie/rule
base kan geanalyseerd worden op problemen en conflicten, bestaat er weining effec-
tief toepasbaar onderzoek dat aangeeft hoe een firewall moet geconfigureerd wor-
den om de evolueerbaarheidsproblemen en voortvloeiende complexiteit te vermij-
den vanaf het initieel ontwerp. Volgens de Normalized Systems theory, is een sys-
teem onstabiel onder verandering, indien de impact van een verandering niet alleen
proportioneel is met het type van de verandering, maar ook met de grootte van het
systeem. Een systeem dat onstabiel is onder verandering wordt als niet-evolueerbaar
beschouwd. De problemen met de firewall configuratie zijn gerelateerd aan onsta-
biliteit t.g.v. verandering. Door de grondoorzaken van de evolueerbaarheidsproble-
men te onderzoeken en een voorstel tot configuratieontwerp naar voren te schuiven,
gebruik makend van de Normalized Systems theory, trachten we de evolueerbaarheids-
problemen van de TCP/IP gebaseerde firewall op te lossen. Dit werk stelt een set
van ontwerpcriteria voor die leiden tot een evolueerbare rule base. Tevens wordt een
algoritme voorgesteld dat een essentiële stap bevat om een bestaande niet evolueer-
bare rule base, om te zetten in een evolueerbare rule base.

HTTP://WWW.UANTWERPEN.BE
http://faculty.university.com
http://department.university.com

xi

Acknowledgements
"Thank you very much! Thank you very much! That’s the nicest thing that anyone’s
ever done for me". What better way to start this acknowledgement than with the
words of this Academy Award-winning song. While the performer was thanking
Ebenezer for his timeful death, I would rather dedicate those words to all those who
had a hand in this dissertation.

Thank you Herwig Mannaert for being my promoter and mentor over the past five
years. Thank you Jan Verelst for being the instigator of my five-year mission, to seek
out NS theory and new applications, to boldly write about firewalls as no one has
done before. Thank you Robert Pergel for being part of my PhD commission.

This work would not have been possible without energy, and what better provider
than Engie. Thank you Paul Buyle for inadvertently putting me on this track. Thank
you Manuel Hervieu for letting me finish it.

There have been many sets of eyes and brains looking over my shoulder and point-
ing out numerous errors and shortcomings. Thank you Stefan Thys for every paper
you reviewed over the past five years. Your support and friendship during this en-
deavor has been one of the more precious gifts I have ever received. Thank you
Christophe De Clercq for the many debates we have had and will continue to have
about NS and more earthly matters. Thank you Joeri Pavlovic, Philippe Le Cerf, and
Frans Versteken, for reading my work and sharing your thoughts. Thank you Koen
Van Damme for some extra mathematical insights. And a special thanks to Colleen
O’Neill and her husband André Muise, for the overseas proofing work.

To all those people who asked me "How is your PhD going?", I want to say thank
you. Having shown interest in my work has meant a lot to me, as it has become an
essential part of who I am.

You never walk alone. To my girlfriend Ilse, and my two wonderful daughters,
Annelies and Karolien, I want to say thank you for it all. Finally, I would have been
nowhere without the support and opportunities my parents have given me. Father,
I think you would have been proud. Mother, I know you are proud, as proud as I
am of you.

Geert Haerens

. . .

xiii

iii

vii

ix

Contents

Declaration of Authorship

Abstract

Acknowledgements

1 Introduction 1
1.1 The TCP/IP-Based Firewall . 1

1.1.1 Network Basics . 2
1.1.2 Firewall Functioning . 3
1.1.3 Firewall Group Objects . 4
1.1.4 Relevance of the Firewall in Today’s Networks 5

1.2 Normalized Systems Theory . 6
1.3 Research Problem: the Firewall as Non-Evolvable System 8
1.4 Research Methodology . 9
1.5 Research Objective and Questions . 10
1.6 Structure of the Dissertation . 12

2 Problem Description 13
2.1 Literature Review and Related Work . 13
2.2 Rule Relationships and Order Sensitivity 15
2.3 Size of the Problem Space . 17

2.3.1 Formal Definitions of Rule Base Components 17
2.3.2 Combinatorics . 20

Ports . 20
Services . 20
Hosts . 20
Services on Host . 20
Clients . 20
Rules and Rule Base . 20

2.4 Ontological Model of a Firewall Rule Base 21
2.4.1 The Ontological Model . 21

2.5 Reverse-Engineering the Implementation Model 23
2.5.1 The Fortinet Firewall . 23

Service Objects . 23
ServiceGroup Objects . 23
Address Objects . 24
AddressGroup Objects . 24
Rule Objects . 24
Implementation Model of a Fortinet Firewall 25

2.5.2 The Palo Alto Firewall . 25
Service Objects . 25
ServiceGroup Objects . 26

xiv

Application Objects . 26
ApplicationGroup Objects . 27
Address Objects . 27
AddressGroup Objects . 27
Rule Objects . 28
Implementation Model of a Palo Alto Firewall 28

2.5.3 The Check Point Firewall . 29
Service<Protocol> Objects . 29
ServiceGroup Objects . 29
Address Objects . 30
Group Objects . 30
Rule Objects . 30
Implementation Model of a Check Point Firewall 31

2.5.4 Overview Implementation Models 32
2.6 Evolvability Issues Due to the Data Model 32
2.7 Problem Overview . 33

3 Artifact Requirements 35
3.1 Eliminating Order Sensitivity . 35
3.2 Group Object Naming Conventions . 35
3.3 Minimize the Number of Rules in the Rule Base 36
3.4 Zero Trust . 36
3.5 Requirements for a Green-Field Artifact 37
3.6 Requirements for a Brown-Field Artifact 37
3.7 Requirements Overview . 38

4 Green-Field Artifact Creation and Demonstration 39
4.1 Designing an Evolvable Rule Base . 39
4.2 The Green-Field Artifact . 41
4.3 Green-Field Artifact Demonstration . 43

4.3.1 Add and Remove a Rule . 43
4.3.2 Adding a New Service to the Network 43
4.3.3 Adding a New Host Offering Existing Services, to the Network 44
4.3.4 Adding a New Host Offering New Services, to the Network . . 44
4.3.5 Adding a New Client to the Network 44
4.3.6 Removing a Service From the Network 44
4.3.7 Removing a Host From the Network 45
4.3.8 Removing a Service From a Host 45
4.3.9 Removing a Client From the Network 45
4.3.10 Summary of the Demonstration 46

4.4 The Impact of Aggregations . 46
4.4.1 Aggregation at Host Level . 46
4.4.2 Aggregation at Service Level . 47

5 Brown-Field Artifact Creation and Demonstration 49
5.1 Brown-Field Artifact Design . 49

5.1.1 Meta-Heuristic Selection . 49
5.1.2 Initial Solution and Neighborhood 50
5.1.3 Objective Function . 50
5.1.4 Feasible Solutions . 51
5.1.5 Move Type . 51

xv

The Impact of Splitting Service Definitions on the OF 51
Split Selection . 58

5.1.6 Move Strategy . 58
5.1.7 Perturbation . 58
5.1.8 Stop Conditions . 58
5.1.9 Solution Encoding . 59

Port . 59
Port Frequency . 60
Port Frequencies List . 60
Service . 60
ServiceList . 60
Service_DI . 60
ServiceDIList . 61

5.1.10 Operations . 61
PortFrequenciesConstructor . 61
Service_DI_List_Creator . 61
Service_Split_Evaluator . 61
Service_Perturbation . 61

5.1.11 The Iterated Local Search Algorithm 62
5.2 Brown-Field Artifact Demonstration . 62

5.2.1 Firewall Export Pre-Processing 62
Step 1: Loading the Export Files 63
Step 2: Preparing the Rule History 64
Step 3: Preparing the Service History 64
Step 4: Replacing the Service Groups in the Rule Base 64
Step 5: Applying the One-Service-Per-Rule Design Criterion . . 64
Step 6: Looking for Identical Services 64
Step 7: Initial Versioning of the Services 65

5.2.2 Adjusting the Rules . 65
5.2.3 Demonstration Data Sets . 65
5.2.4 Demonstration Results . 67

Demonstration Environment . 67
Demonstration Overview . 67
Objective Function and the Number of Rules 69
Impact of the Algorithm on the Number of Service Definitions . 72
Evolution of the Objective Function During Algorithm Execution 72
Tracking of Rule and Service Definition Changes 75

5.3 Discussion and Conclusion . 75

6 Implications of the Artifact 77
6.1 Impact on the Ontological and Implementation Model 77
6.2 Impact of the Filtering Strategies . 79

6.2.1 Interconnect Filtering Strategy 79
6.2.2 Inbound and Outbound Filtering Strategy 81

6.3 Multiple Firewalls . 82
6.3.1 The Serial Firewall Filtering Function 83
6.3.2 Applying the Rules on Some Firewalls 84
6.3.3 Applying the Rules on all Firewalls 85
6.3.4 Restricting Inbound Traffic Filtering 85
6.3.5 Apply Inbound Traffic Filtering to More Than Two Firewalls . . 87

6.4 Software-Defined Network/Firewall . 87

xvi

6.5 Implication of the Artifact on Firewall Scaling 88
6.6 The Firewall Rule Base Analyser and Normalizer System 90

7 Evaluation and Discussion 93
7.1 The Artifacts . 93

7.1.1 Green-Field Artifact Limitations 93
7.1.2 Big O of the Brown-Field Artifact 93
7.1.3 Performance of the Brown-Field Artifact 94
7.1.4 Global Optimum . 95
7.1.5 Brown-Field Artifact Limitations 95

Naming of the Services . 95
Non-Existing Service Definitions 95
Destinations and Sources . 95

7.2 The Application to the Environment . 96
7.3 The Usage of Existing Knowledge and Methodologies 97

7.3.1 Existing Knowledge Base . 97
7.3.2 Methodologies . 97

Experiment Description . 97
Construct Validity . 98
Statistical Conclusion Validity 100
Internal Validity . 100
External Validity . 102
Validity Summary . 103

7.4 The Additions to the Knowledge Base 103
7.4.1 Size of the Problem . 103
7.4.2 The Green-Field Artifact . 103
7.4.3 The Brown-Field Artifact . 103
7.4.4 Impact of the Brown-Field Artifact on the Size of the Rule Base 104
7.4.5 Measuring the Evolvability of a Firewall 104
7.4.6 Firewall Scaling . 104
7.4.7 Multi-Firewall Design Guidance 104
7.4.8 Contribution to NS Theory . 104

7.5 Artifacts as Enterprise Engineering Instruments 105
7.5.1 Way of Thinking (WoT) . 105
7.5.2 Way of Modeling (WoM) . 105
7.5.3 Way of Working (WoW) . 106
7.5.4 Way of Supporting (WoS) . 106
7.5.5 Way of Organizing (WoO) . 106

8 Conclusion and Future Work 107
8.1 Conclusion . 107
8.2 Contributions . 108
8.3 Limitations and Future Research . 109

xvii

List of Figures

1.1 The OSI Reference Model (from [8]) . 2
1.2 The TCP/IP Stack (from [8]) . 3
1.3 Firewall functioning . 4
1.4 Firewall objects . 5
1.5 A stable system . 6
1.6 An unstable system . 7
1.7 The Design Science Framework (from [23]) 9
1.8 Design Science Research Methodology Process (from [26]). 10
1.9 RO1, RO2 and RQ1 conceptual model 11

2.1 Possible relationships between rules (from [30]) 16
2.2 Ontological FACT model of a firewall rule base 22
2.3 Implementation model of a Fortinet firewall 26
2.4 Implementation model of a Palo Alto firewall 28
2.5 Implementation model of a Check Point firewall 31
2.6 Overview of ontological and implementation concepts 32

5.1 Split example . 52
5.2 Split case 1 . 54
5.3 Split case 2 . 55
5.4 Linear interpolation . 57
5.5 Expected evolution of the Objective Function 59
5.6 ILS-based algorithm . 63
5.7 Rule adjustments and rule/service history tracking in the ILS 66
5.8 %OF Improvement vs number of rules in the rule base 70
5.9 % extra rules vs %∆OF . 71
5.10 Impact of the algorithm on the number of services. 72
5.11 OF, L1I and L2I for the Demoset firewall. 73
5.12 OF, L1I and L2I for the HOSTING-FR-GRDF firewall. 73
5.13 OF, L1I and L2I for the AdminBE firewall. 74
5.14 OF, L1I and L2I for AdminFR firewall. 74

6.1 Ontology of an evolvable rule base . 78
6.2 Implementation model of an evolvable rule base 78
6.3 Inbound and outbound on a single firewall 81
6.4 Multiple firewalls in a network . 83
6.5 Apply the rules on some firewalls . 84
6.6 Back-to-back firewalls . 85
6.7 Rules on firewall F1 . 86
6.8 Rules on firewall F2 . 86
6.9 Path with multiple firewalls . 87
6.10 Scaling of firewalls with an evolvable rule base 89
6.11 Firewall management tool . 91

xviii

7.1 Brown-field artifact performance . 94
7.2 RINR vs SDI . 99
7.3 The Five Way Framework (from [44]) . 105

xix

List of Tables

4.1 Summary green-field artifact demonstration 46

5.1 Overview demonstration results . 68
5.2 Performance of the algorithm . 69
5.3 %OF Improvement vs initial Number of Rules (NoR) 70
5.4 %Growth Rule Base vs % OF Improvement 71

7.1 Brown-field artifact performance . 94
7.2 RNIR vs SDI . 98

xxi

List of Abbreviations

AVT Action Version Transparency
API Application Programming Interface
AWS Amazone Web Services
BIBO Bounded Input Bounded Output
CE Combinatorial Effect
CSV Comma Separated Values
DEMO Design and Engineering Methodology for Organizations
DI Disjointness Index
DNS Domain Name Service
DSL Digital Subscriber Line
DSF Design Science Framework
DSM Design Science Methodology
DSRM Design Science Research Methodology
DSMP Design Science Methodology Process
DVT Data Version Transparency
EE Enterprise Engineering
FRANS Firewall Rule Base Analyser and Normalizer System
FQDN Fully Qualified Domain Name
HR Human Resources
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secured
IAF Identity Aware Firewall
IAM Identity and Access Management
ICF InterConnect Filtering
ICMP Internet Control Message Protocol
ILS Iterated Local Search
IP Internet Protocol
IS Information Systems
L1I Level 1 Iterations
L2I Level 2 Iterations
LS Local Search
NoR Number of Rules
NoS Number of Services
NoSG Number of Service Groups
NoUG Number of Unique Services
NS Normalized Systems
OF Objective Function
OS Operating System
OSI Open Systems Interconnection
PF Port Frequencies
RINR Relative Increase in Number of Rules
RM Research Methodology

xxii

RO Research Objective
RQ Research Question
RTP Real-time Transport Protocol
SDI Service Disjointess Index
SoC Separation of Concern
SoS Sepration of State
SNMP Simple Network Management Protocol
SDN Software Defined Network
SDF Software Defined Firewall
SONET Synchronous Optical NETworking
TCP Transport Connection Protocoll
UDP User Datagram Protocol
VLAN Virtual Local Area Network
WiFi Wireless Fidelity
WoM Way of Modeling
WoO Way of Organizing
WoS Way of Supporting
WoT Way of Thinking
WoW Way of Working
ZT Zero Trust

xxiii

This thesis is dedicated to Frederik Leemans — a great
engineer, fantastic enterprise architect and homo universalis,

but most importantly, a dear, loved and missed friend. He was
my personal promoter and was looking forward to this work as

eagerly as I was. This one goes out to you.

1

Chapter 1

Introduction

The Normalized Systems (NS) theory studies the evolvability of modular systems.
Although the theory originates in software development, the insights of NS theory
into modular structures and evolvability can be used in other domains. There has
been previous PhD research on the topic of applying NS theory to enterprise engi-
neering [1] [2], business processes [3], accounting systems [4] and document man-
agement [5]. This dissertation seeks to add the domain of IT infrastructure to this list.
IT infrastructure is a constantly-evolving sub-domain within the field of Information
Systems. Over a period of fifty years, this sub-domain has gone from the manage-
ment of isolated mainframes to the world of the Internet of Things (in the broadest
sense), wherein all possible digital devices are interconnected. In [6] we have shown
that IT Infrastructure suffers from strong coupling between components and associ-
ated evolvability issues. For example: the introduction of a new anti-virus tool on
all PCs, the replacement of a storage system, or the upgrade of an operating sys-
tem. Each of these changes has potential to introduce a significant ripple effect that
is proportional to the size of the environment. However, the problem is not limited
to interaction between infrastructure components. The same issues exist inside an
infrastructure component and even in the parts that can be configured. The TCP/IP-
based firewall is an infrastructure component with serious evolvability issues. Some
of these are inherent to the component, but the most serious evolvability issues are
introduced during firewall configuration. We believe this may be avoided by capi-
talizing on the insights on modularity and evolvability that NS theory provides.

This dissertation concerns a complex technical component: the TCP/IP-based fire-
wall. Before going into the details of the research, we begin in Section 1.1 wherein
we explain the basics of the TCP/IP-based firewall. As this work relates to Nor-
malized Systems theory, we provide a short introduction of NS theory in Section 1.2.
Having set the scene, we continue in Section 1.3 with the introduction of the research
problem. In Section 1.4, we outline the research methodology, and in Section 1.5 we
describe our research objectives and our academic contribution. The final section,
Section 1.6, outlines the structure of this dissertation.

1.1 The TCP/IP-Based Firewall

This section begins with an explanation of network basics, followed by the defini-
tion of a firewall rule, closing with how a firewall works with rules. We continue
by explaining firewall group objects, and conclude by arguing for the relevance of
further study of the evolvability of a firewall rule base.

2 Chapter 1. Introduction

FIGURE 1.1: The OSI Reference Model (from [8])

1.1.1 Network Basics

The OSI model [7] [8] is a reference model that explains how two applications can
communicate with each other over a network. It contains seven layers, each address-
ing one particular aspect related to communication over a network (see Figure 1.1).
The model prescribes the interfaces that need to exist between the layers. As long as
the implementation follows the direction of the interfaces, different implementation
methods can be used and interchanged without affecting the other layers. The OSI
model prescribes an evolvable modular structure.

The TCP/IP V4 protocol stack [9] is a concrete implementation of the OSI model
and is the dominant method used to allow communication between IT infrastruc-
ture resources via a physical network. It does not comprehensively follow the OSI
mode since it only implements four of the seven layers (see Figure 1.2).

• The Link Layer can be Ethernet, WiFi or DSL - these are the media through
which the bits and bytes, transformed into some form of a electromagnetic
signal, will travel.

• In the Internet Layer we see Internet Protocol (IP). Each network-connected
resource must have a unique address. This is the IP address, which contains

1.1. The TCP/IP-Based Firewall 3

FIGURE 1.2: The TCP/IP Stack (from [8])

32 bits. This 32-bit address is represented as four numbers (each ranging from
0 to 255), separated by a dot (.), and split into four groups of eight bits (i.e., a
byte).

Example: address 11111111.00000001.00000010.00000001, is represented as 255.1.2.1.

• The next layer up is the Transport Layer. This layer will send and receive
packages and places them in the correct order before making them available
to the Application Layer above. Each application in the Application Layer is
assigned a TCP or UDP port number. It is this number that provides the neces-
sary information to the Transport layer so that it can identify which application
receives information. TCP and UDP are the two possible protocols in use at the
Transport Layer. TCP and UDP ports are comprised of a 16-bit number, repre-
sented by its decimal value.
Example: port 0000000000000001 is represented as port 1.

• The top layer is the Application Layer — the network package’s final destina-
tion.

1.1.2 Firewall Functioning

The TCP/IP-based firewall located in the network path between resources can filter
traffic between the resources based on the Internet Layer (IP address) and Transport
Layer (TCP/UDP ports) properties of those resources. Filtering occurs through the
application of rules. A rule is a tuple containing the following elements: <Source IP,
Destination IP, Destination Port, Protocol, Action>. The rule is evaluated by the fire-
wall, meaning that when the firewall receives traffic information originating from
a resource with IP address =<Source IP>, going to resource =<Destination IP>, ad-
dressing a service listening on Port = <Destination port>, using Protocol = <Proto-
col>, the firewall will perform an action = <Action>. The action can be “Allow” or
“Deny”.

A firewall rule base is a collection of order-sensitive rules. The firewall will eval-
uate all inbound traffic against the ordered rule base. The firewall starts at the top
of the rule base until it encounters the first rule that matches the criteria (Source,
Destination, Destination Port, Protocol) of the traffic. The firewall then performs

4 Chapter 1. Introduction

FIGURE 1.3: Firewall functioning

the action as specified in the r ule. In a firewall rule, <Source IP>, <Destination IP>,
<Destination Port> and <Protocol> can be one value or a range of values.

The protocol can be TCP or UDP. In the remainder of this document, the notion
of protocol is omitted as it can be included in the Port variable (for example, TCP
port 58 or UDP port 58).

Example: Figure 1.3 demonstrates the functioning of the firewall. A client with IP
address 1.1.1.1 attempts to connect to a service listening on TCP port 22 on the server
with IP 1.1.2.1. The firewall scans the rule base, starting at the top, until i t finds a
rule that is a match for source (1.1.1.1), destination (1.1.2.1), and service (TCP 22).
The firewall performs the action specified in this matching ru le. Any rules that also
match the network package but that are located beyond the first matching rules are
ignored.

1.1.3 Firewall Group Objects

It would be difficult for humans to interpret a rule base comprised of IP addresses as
source/destination and port numbers. Users would be confronted by a series of ap-
parently meaningless numbers. Firewalls allow the usage of firewall objects (called
groups) to assign a logical name to a source, a destination, or a port, which is more
human-friendly. Groups are populated with IP addresses or ports. Groups can be
nested. Figure 1.4 demonstrates the usage of groups in the previous example of the
firewall functioning.

Using groups should improve the manageability of the firewall. H owever, using
groups may also result in degraded manageability.
For instance, “Group_Windows_APP” and “Group_Windows_APPS” could be two
groups each containing the IP addresses of all Windows Application Servers. The
latter may have been created without the knowledge of the former [10]. Although
both groups represent the same concept, group memberships may start to deviate

1.1. The TCP/IP-Based Firewall 5

FIGURE 1.4: Firewall objects

from each other. We will see in Chapter 2 that this may lead to anomalies in the rule
base. The group structure must be properly designed to avoid this.

1.1.4 Relevance of the Firewall in Today’s Networks

Firewalls are an essential component of network security. They have been pro-
tecting network-connected resources for more than thirty years, and are expected
to continue to do so for decades [11][12][13]. Initially, firewalls were used to pro-
tect business-computing operations against outside threats (i.e., the “evil Internet”).
This type of filtering is called North-South traffic filtering [14]. However, security
breaches are not only caused by access via the Internet. Indeed, a significant pro-
portion of security breaches are caused from within company networks [15] where
hacks have become more sophisticated. Getting a foothold on one resource on the
internal network and from there on hopping between resources, is a known hacking
strategy against which filtering North-South traffic offers no protection. For this rea-
son, protecting the network-connected resources from internal traffic, referred to as
East-West traffic [14], is gaining ground.

Networks are becoming increasingly complex: they often contain multiple firewalls
protecting numerous network segments. The rule base of these firewalls (i.e., the
definitions determining which traffic is and is not allowed) is becoming equally com-
plex, approaching the point of unmanageability. In a survey organized by Firemon
[10], 73 % of survey participants stated that their firewall ranges from “somewhat
complex” to “out of control”. Further, complexity is the highest-ranked challenge
for firewall management [11][12] [13].

The firewall rule base is a classic example of a system that needs to e volve. What

6 Chapter 1. Introduction

FIGURE 1.5: A stable system

begins with a single firewall that separates two network segments and filters rules
between them rapidly increases in complexity. As the network grows, the number
of resources connected to the network grows, as does the number of services offered
on the network, and thus the potential number of security threats. The resulting
firewall rule base will enlarge dramatically. This evolution will, at some point, result
in a rule base where regular changes (i.e., the addition or removal of a rule) result
in unforeseen side effects. Those effects are proportional to the size of the rule base:
the bigger the system (rule base), the more pronounced the effects [11].

A network rarely contains only one firewall. Large companies have networks con-
taining many firewalls. Valuable IT assets located in data centers are protected by
multiple firewall layers. A single firewall can quickly become a non-evolvable sys-
tem. Multiple firewalls only exacerbate the problem. Besides the question of how to
create the correct rule and implement it on the rule base, one also must determine to
which firewall(s) this rule should be applied.

Multiple vendors sell tools that analyze a firewall rule base and may even be used to
simplify it (e.g., Firemon, Tufin, Algosec). Some academic research on such analyses
is available. Both industry and academics seem to focus on improving existing rule
bases. However, a more ambitious objective would be to avoid this type of prob-
lem at the outset of the firewall rule base design through the conscious restriction of
design-space to incorporate evolvability.

1.2 Normalized Systems Theory

The Normalized Systems (NS) theory [16, 17, 18, 19] originates from the field of
software development. There is widespread agreement in the software engineering
community that the use of software modules decreases complexity and increases
evolvability. It is also well understood that one should strive toward “low coupling
and high cohesion”. The problem is that the community has not achieved consensus
as to how exactly “low coupling and high cohesion” are best achieved, nor what the
ideal module size should be in order to achieve optimal low complexity and high
evolvability.

NS theory takes the concept of system theoretical stability from the domain of classic

1.2. Normalized Systems Theory 7

FIGURE 1.6: An unstable system

engineering, and applies it to the design cycle of systems in order to determine the
necessary conditions which a modular structure of a system must meet in order for
the system to exhibit stability when design changes are made. Stability is defined
as Bounded Input results in Bounded Output (BIBO). A system is considered stable
when a bounded input to the system leads to a bounded output. For example, the
cruise control system of a car is a stable system, as a bounded input - the setting of
a target speed for the car - leads to a bounded output - the car accelerating until it
has reached the desired speed. A system is considered unstable if a bounded input
leads to an unbounded output. An example of an unstable system is an uncontrolled
nuclear reaction. A bounded input - firing a neutron into a mass of Uranium 235 -
leads to an unbounded output - a chain reaction of neutrons being released due to
fission, resulting in an explosion. See Figure 1.5 and Figure 1.6 for a graphical repre-
sentation.

When translating this concept to software design, one can consider bounded input
as a certain number of functional changes to the software and the bounded output
as the number of effective software changes. If the amount of effective software
changes is proportional to the amount of functional changes as well as to the size of
the existing software system, then NS theory states that the system exhibits a Com-
binatorial Effect (CE) and is considered unstable under change. NS theory proves
that four design rules for the modular software structure of the system must be re-
spected. These design rules are a necessary condition to eliminate CEs. These rules
are:

• Separation of Concern (SoC): a module should only address one concern or
change driver.

• Separation of State (SoS): a state should separate the use of a module from
another module during its operation.

• Action Version Transparency (AVT): a module that performs an action should
be changeable without impacting the modules that call this action.

• Data Version Transparency (DVT): a module performing a certain action on a
data structure should be able to continue doing this action, even if the data
structures has undergone change (add/remove attributes).

8 Chapter 1. Introduction

Only by respecting these rules can a system undergo infinite growth while maintain-
ing the capacity to incorporate new requirements.

Although NS theory originates in software design, the applicability of NS princi-
ples exists in other disciplines such as process design [3], organizational design [2],
accounting [4], document management [5], and physical artifacts [20]. The theory
may be extended to study evolvability in any system that can be seen as a modular
system and derive design criteria for the evolvability of such a system. In this work,
NS theory is used to underpin the study the evolvability of the TCP/IP firewall rule
base.

NS theory studies combinatorics in modular systems and provides a set of theo-
rems to design modular systems exhibiting ex-ante proven evolvability. The goal is
to avoid so-called Combinatorial Effects (CEs). CEs are impacts that are proportional
to the type of change as well as to the size of the system to which the change is ap-
plied. When all modules of a system respect NS theorems, the system will be free of
such CEs. At that point, the system can be considered stable under change for a set
of anticipated changes (such as adding and removing system components).

1.3 Research Problem: the Firewall as Non-Evolvable Sys-
tem

The TCP/IP-based firewall has been and will continue to be an essential network se-
curity component in protecting network-connected resources from unwanted traffic.
The increasing size of corporate networks and connectivity needs has resulted in the
considerable increase of firewall rule bases. Large rule bases have a nasty side effect:
it becomes increasingly difficult to add the correct rule at the correct location in the
firewall.

In larger rule bases, the probability of anomalies being present increases, poten-
tially resulting in the erosion of the firewall’s security policy or incorrect functioning.
Changing the firewall rule base becomes increasingly complex as the size of the sys-
tem increases. This observation is shared by [15] Forrester and the firewall security
industry [12] [21].

NS theory defines a CE as the effect that occurs when the impact of a change is
proportional to the nature of the change and the system’s size. According to NS
theory, a system that suffers from CEs is considered unstable under change. A fire-
wall’s vulnerability to CEs increases as the rule base size increases. Firewalls thus
suffer from evolvability issues. Order sensitivity plays a vital role in the rule base’s
evolvability issues. The necessary condition to remove order sensitivity is known,
i.e. non-overlapping or disjoint rules. However, firewalls don’t enforce that condi-
tion, leaving open the potential for misconfiguration.

Issues with evolvability of the firewall rule base induce business risks. The first is the
risk of technical communication paths being unavailable to properly execute busi-
ness activities. The second is that flaws in the rule base may result in security risks,
leading to the business’s vulnerability to malicious hacks and resulting in damage
to business activities. The third is the increased cost and delay of firewall changes.

1.4. Research Methodology 9

FIGURE 1.7: The Design Science Framework (from [23])
.

1.4 Research Methodology

The TCP/IP firewall is one component of an Information System (IS) landscape. Re-
search in this landscape is referred to as IS research. The IS research within this
dissertation relies heavily on Design Science Methodology. Researchers attempt to
identify a solution for an existing problem on a technical system. The term "tech-
nical system" refers to a man-made technical system with no human agency and
within which cause-and-effect relations are deterministic rather than correlated. De-
sign Science, the science of the artificial [22], is a relatively new discipline that aims
at increasing the scientific rigor in the creation of artifacts. Because Design Science
does not follow the same steps that the classical scientific method requires, it has
received push-back from adherents of the latter community.

According to classical Research Methodology (RM), and more precisely, research
that aims to observe the effect of applying a treatment aimed at having an effect on a
population, the treatment is taken as a given. However, treatments are consciously
created artifacts aimed at inducing an effect. They required conscious design, to en-
sure that they address the problem at hand, can be administered, and produce an
intended effect. Without conscious design of the treatment, the resulting experiment
and associated contribution to science is of little value.

Gregor and Hevner [23] propose a Design Science Framework (DSF) for IS research,
comprised of two interacting cycles (Figure 1.7): 1) the Relevance Cycle, i.e. the in-
teraction of what is being designed and the environmental context to which it will be
applied, and 2) the Rigor Cycle, which links what is being designed to the existing
knowledge base and thereby ensuring that it adds new knowledge.

10 Chapter 1. Introduction

FIGURE 1.8: Design Science Research Methodology Process (from
[26]).

Work undertaken according to Design Science Research Methodology (DSRM) should
include both cycles. The Relevance Cycle concerns identification of a real problem
that is applicable to either persons, organizations or technologies and whose signif-
icance warrants IS Research. During IS Research, the artifact is created, tested, and
improved across multiple access/refine cycles. The end result of IS Research must
be an artifact that is actually applicable to the environment wherein the problem re-
sides. The Rigor Cycles must feed the IS Research with foundational and domain
knowledge related to the problem, together with relevant methodologies for study-
ing the domain, and ensure the required rigor during artifact creation, assessment
and refinement. The end result — i.e., the artifact — should not only solve the prob-
lem but also add new knowledge to the existing Knowledge Base.

Peffer [24] proposes a Design Science Methodology Process (DSMP) (Figure 1.8)
consisting of various steps, ranging from problem description to the collection of re-
quirements and artifact design, with the final steps of demonstration and evaluation.
These process steps are well suited as a reporting canvas for Design Science-related
research [25] [26].

1.5 Research Objective and Questions

In Design Science, the focus shifts from Research Question (RQ) to Research Objec-
tive (RO). Our objective is to address the evolvability issues of the TCP/IP firewall,
by means of artifacts. Our purpose is to create two artifacts:

• RO1: A green-field artifact, as a method to create an evolvable firewall rule base
that is ex ante proven evolvable, assuming one has the luxury of starting from

1.5. Research Objective and Questions 11

FIGURE 1.9: RO1, RO2 and RQ1 conceptual model

an empty rule base that will grow.

• RO2: A brown-field artifact, as an algorithm that transforms an existing firewall
rule base from a non-evolvable state to an evolvable state while keeping intact
the existing firewall logic.

The application of NS theory results in a fine-grained modular structure. We expect
this to also be the case when applying NS theory to firewalls, meaning that in doing
so we would expect to obtain more fine-grained rule base. When our brown-field
artifact is applied to an existing rule base, we expect the number of rules to increase.
We do, however, not know the order of magnitude of this increase. The relationship
between the application of the result of RO2 (brown-field artifact) and the increase
in rule base size will be studied in RQ1.

Associated with RO2, comes RQ1:

• RQ1: How many additional rules will the application of the brown-field arti-
fact introduce?

The conceptual models of the ROs and RQ may be found in Figure 1.9.

Research conducted on such artifacts contributes to the DSF Relevance Cycle. This is
in part because evolvability issues impact organizations (the need), and their appli-
cation can be expected to improve evolvability and thus lower the negative impact
(on organizations) of firewalls (technology). We also contribute to the DSF Rigor
Cycle by grounding the artifact in an existing body of knowledge related to firewall
evolvability issues and addressing root causes. NS theory aids in understanding the
evolvability issue and structuring the artifacts. The classical Research Methodology
will help in investigating the validity of the experimental paradigm to answer RQ1.
The existing Knowledge Base is enriched by the formal expression of the size of the
problem, a method of measuring the degree of evolvability, the algorithm that con-
verts a non-evolvable rule base into an evolvable rule base, as well as insights on
the impact of the artifact on rule base size. By making artifacts that are grounded
in Normalized Systems theory, we extend the applicability of NS theory to a new
domain and thus strengthen NS theory in terms of Design Theory [19]].

12 Chapter 1. Introduction

1.6 Structure of the Dissertation

As proposed by Gregor and Hevner [25], this work is structured according to the
DSMP. Chapter 2 - Problem Description - wherein we review the existing literature
on firewall issues and expand on the problem’s various dimensions. Chapter 3 –
Artifact Requirements – wherein we discuss the expectation for an artifact that will
either build a new rule base with evolvability as a design criterion — referred to as a
green-field artifact — and the expectations for a brown-field artifact that will convert
an existing non-evolvable rule base into an evolvable rule base. Chapter 4 – Green-
Field Artifact Creation and Demonstration – wherein we address the creation, by
means of NS theory applied as a Design Theory, and demonstrate a design method
for rules that will lead to an evolvable rule base. Chapter 5 - Brown-Field Artifact
Creation and Demonstration - wherein we propose and demonstrate an algorithm
based on meta-heuristics that will deliver an essential building block for converting
a non-evolvable rule base into a rule base that adheres to the design criteria of the
green-field artifact. Demonstration of the artifact will occur by means of an experi-
ment which proves that the brown-field algorithm was responsible for the observed
effect. Further, we will demonstrate the impact of the artifact on the size of the rule
base. Chapter 6 – Artifact Implications – wherein we focus on the implication of
various filtering strategies on the artifacts, on extending the evolvability of a single
firewall to multiple firewalls, and on firewall scaling. Chapter 7 – Evaluation and
Discussion – wherein we critically examine adherence to the DSF and use the classi-
cal Research Methodology to ground the various validity claims involved in artifact
creation and performance. Chapter 8 - Conclusion and Future Work - wherein we
summarize and conclude the dissertation.

13

Chapter 2

Problem Description

This chapter discusses the problems related to the firewall rule base. Section 2.1 be-
gins with a literature review related to firewall rule base issues. In Section 2.2, we
continue by zooming in on the most important cause underlying the issues — the re-
lationships between rules. In Section 2.3, we formalize the components comprising a
rule base, and examine the combinatorics of the components in order to understand
the size of the problem space. In Section 2.4, we present an ontological model of a
firewall rule base and its components. This ontological model serves as a reference
to study the implemented data model used by the three major firewall producers
(Fortinet, Palo Alto, Check Point), which will be reverse-engineered, based on rule
base exports, in Section 2.5. In Section 2.6, we discuss the issues related to both the
ontological model and the implementation models. The chapter ends with a con-
clusion, which addresses all identified problem dimensions of firewall rule bases, in
Section 2.7. The findings of this chapter have been published in [27], [28] and [29].

2.1 Literature Review and Related Work

The academic literature concerning firewalls can be divided into three essential groups.
Published roughly between 1990 and 2000, the first of these focuses on the perfor-
mance of the firewall and the hardware used to perform the actual package filtering.
The second group (published roughly between 2000 and 2006) focuses on the com-
plexity and issues with the rule base of the firewall. The final group (published
roughly after 2006) focuses on the firewall within the context of a Software De-
fined Network (SDN), where distributed firewalls and software-defined firewalls
are used.

As the present thesis focuses on the complexity and issues related to the firewall
rule base, the following literature review will focus exclusively on the second group of
papers [30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41]. Our research did not iden-tify
existing academic literature that specifically addresses and attempts to solve the
evolvability issues of the firewall rule base. In the absence of such published studies,
we conclude that academic literature on this specific question does not exist.

In addition to academic papers, we studied reports from Forrester, as well as var-
ious white papers published by industry leaders [10, 11, 12, 21, 42] . Those include
surveys, which provide information on the current state of affairs. One might be
forgiven for concluding, based on observing a post-2006 decline in the number of
academic publications concerning rule base issues, that the problem is solved. How-
ever, the surveys support an alternate conclusion. Companies continue to struggle

14 Chapter 2. Problem Description

with their firewalls [10, 11, 12, 14, 15, 21, 42, 43]. This can be due to the “knowing-
doing” gap or because the issue is not fully resolved.

Most papers that discuss firewall anomalies and anomaly resolution algorithms start
by stating that there is a problem with the firewall rule base due to:

• Translation issues: how to convert a high-level security policy into the low-
level language of firewall rules [30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42].

• Issues related to the size of the rule base: a large rule base is considered com-
plex [10, 33, 37, 38, 39].

• Error and anomalies issues: A rule base is error-prone due to complexity and
manual interventions [10, 11, 12, 14, 15, 21, 32, 33, 39, 42, 43] and may contain
firewall rule conflicts or anomalies [10, 21, 30, 31, 32, 33, 36, 38, 39, 41].

The “Translation-issue” is tackled by proposing tools which can translate high-level
security concepts into low-level firewall rules. FANG [36], FIRMATO [33], LUMETA
[35] are artifacts that assist this translation. There is, however, no guarantee that
these tools will deliver a small and simple firewall rule base free of anomalies [33].
Companies such as TUFIN, ALGOSEC, FIREMON, and VMWare also offer com-
mercial tools which claim to help manage network security complexity. The tools,
however, neither prescribe nor enforce how a rule base should be created in order to
be anomaly free and exhibit evolvability.

The “Size of the rule base issue” is the subject of much attention. Effort is put into
reducing the rule base to a minimum list of rules while still meeting the filtering
requirements. The motivation for this “reduction of the rule base” is performance,
although in [33] it was suggested that the actual size of the rule base is unrelated to
the manner by which the hardware actually applies the rules. This suggests that size
of the rule base is uncorrelated to firewall performance.

The “Error issue”, arising from complexity and manual intervention, is recognized
and confirmed in recent surveys [10, 11, 12, 14, 15, 21, 42, 43]. Available academic
papers focus primarily on the anomalies in the rule base as the technical root cause
of error. Over time, the identification of the anomaly types, as well as their for-
mal definition and proof, became more precise and resulted in formalizing how a
firewall rule base should be formulated in order to remain stable under change: it
should only include disjoint rules [30, 32, 38, 39, 40, 41]. Artifacts have been pro-
posed [30, 32, 33, 37, 38, 41], which would allow for scanning the rule base for non-
disjoint rules and, if required, making them disjoint. The same artifacts allow one
to assess the impact of adding a new rule and adjusting the rules whereby the rule
base exclusively contains disjoint rules. However, each time a rule is entered, the
entire rule base must be scanned in order to detect potential anomalies between the
existing rule base and the new rule. Thus, the effort required to make a change to
the system is proportional to system size.

The literature review shows that the problems related to the firewall rule base are
well understood, as is the necessary condition to keep the rule base under control
(i.e., having disjoint rules). However, clear architectural guidance on how to create
a disjoint rule base from the very moment of conception is lacking. It is precisely
this architectural guidance utilizing NS theory that is the main contribution of this
doctoral thesis.

2.2. Rule Relationships and Order Sensitivity 15

By structuring the rules such that that they are always disjoint, one may add and
remove rules without having to analyze the rule base or be concerned about unfore-
seen side effects of the change.

2.2 Rule Relationships and Order Sensitivity

As a rule base changes over time, different rules start interfering with each other,
resulting in complexity.
Based on [30], the relationships between rules and rule components are defined as
follows:

• Field: A field in a rule is defined as a source, destination or service. A field is
a set of values, with a minimum of size one.
Example: The source field of a rule contains 3 IP addresses/values - (10.10.10.1,
10.10.10.2, 10.10.10.3)

• Equal Fields: Two corresponding fields of two rules are equal if the set of
values of the fields are the same.
Example: The source field of a rule R1 and source field in rule R2 contain the same 3
IP addresses - (10.10.10.1, 10.10.10.2, 10.10.10.3)

• Inclusive Fields: Two corresponding fields of two rules are inclusive if the set
of values of the field of the first rule are a subset of, but not equal to, the second
rule field’s set of values.
Example: The source field of R1 contains (10.10.10.1, 10.10.10.2) and the source field
of R2 contains (10.10.10.1, 10.10.10.2, 10.10.10.3). The IPs (10.10.10.1, 10.10.10.2)
are a subset of (10.10.10.1, 10.10.10.2, 10.10.10.3). The source field of R1 is inclusive
with regards to the source field of R2.

• Correlated Fields: Two corresponding fields of two rules are correlated if there
are some values, but not all, of the field of the first rules that are equal to some
values, but not all, of the field of the second rule. The intersection between the
sets of values of the fields is not empty, but the fields are not equal or inclusive
either.
Example: The source field of R1 contains (10.10.10.1, 10.10.10.2, 10.10.10.3) and
the source field of R2 contains (10.10.10.2, 20.20.20.20, 30.30.30.30). The two source
fields are correlated as they intersect with the IP 10.10.10.2.

• Distinct Fields: Two corresponding fields in two rule are distinct if they are
not equal, not inclusive or not correlated. The intersection between the sets of
values of the fields is empty.
Example: Source field (10.10.10.10) of rule R1 and source field (10.10.10.100) of rule
R2 are distinct.

• Matching Fields: Two corresponding fields in two rules match if they are equal
or inclusive.
Example: Source field of R1 = (10.10.10.1, 10.10.10.10) and the source field of R2 =
(10.10.10.1, 10.10.10.10, 10.10.10.30), are matching.

• Exactly Matching Rules: Rules R1 and R2 are exactly matched if every field in
R1 is equal to the corresponding field in R2.
Example: Rule R1: (source = (10.10.10.10); destination = (20.20.20.20); service =

16 Chapter 2. Problem Description

FIGURE 2.1: Possible relationships between rules (from [30])

(TPC 100); action = allow) and R2: (source = (10.10.10.10); destination = (20.20.20.20);
service = (TPC 100); action = deny), are exactly matching rules.

• Completely Disjoint Rules: Rules R1 and R2 are completely disjoint if every
field in R1 and R2 is distinct.
Example: Consider rule R1: (source = (10.10.10.10); destination = (20.20.20.20); ser-
vice = (TPC 100); action = allow) and rule R2: (source = (30.30.30.30, 30.30.30.21);
destination = (40.40.40.40, 40.40.40.41); service = (TPC 200,201); action = deny).
Both rules are completely disjoint.

• Partially Disjoint Rules or Partially Matching Rules: Rules R1 and R2 are
partially disjoint (or partially matched) if there is at least one field in R1 and
R2 that is distinct. The other fields can be equal, inclusive or correlated.
Example: Consider rule R1: (source = (10.10.10.10); destination = (20.20.20.20);
service = (TPC 100); action = allow) and rule R2: (source = (10.10.10.10); destination
= (40.40.40.40, 40.40.40.41); service = (TPC 100,201); action = deny). R1 and R2 are
partially disjoint, as destination is a distinct field.

• Inclusively Matching Rules: Rules R1 and R2 are inclusively matched if there
is at least one field that is inclusive, and the remaining fields are either inclu-
sive or equal.
Example: Consider Rule R1: (source = (10.10.10.10); destination = (20.20.20.20);
service = (TPC 100); action = allow) and R2: (source = (10.10.10.10, 10.10.10.11);
destination = (20.20.20.20, 20.20.20.21); service = (TPC 100); action = deny). Then
rule R1 inclusively matches rule R2.

• Correlated Rules: Rules R1 and R2 are correlated there is at least one field that
is correlated, while the remaining fields are either equal or inclusive.
Example: Consider rule R1: source = (10.10.10.10, 10.10.10.11); destination = (20.20.20.20,
40.40.40.41); service = (TPC 100); action = allow) and rule R2: (source = (10.10.10.10);
destination = (40.40.40.40, 40.40.40.41); service = (TPC 100,201); action = deny).
Rules R1 and R2 are correlated.

2.3. Size of the Problem Space 17

Figure 2.1 graphically represents these various relations. Exactly matching, inclu-
sively matching, and correlated rules can result in the following firewall anomalies
[32]:

• Shadowing Anomaly: A rule R1 is shadowed by another rule R2 if R2 precedes
R1 in the policy, and R2 can match all the packets matched by R1. The result
is that R1 is never activated.

• Correlation Anomaly: Two rules R1 and R2 are correlated if they have different
filtering actions and R1 matches some packets that R2 matches and R2 matches
some packets that R1 matches.

• Redundancy Anomaly: A redundant rule R1 performs the same action on the
same packets as another rule R2 so that if R1 is removed the security pol-
icy will be unaffected. Redundancy anomalies are a subset of the shadowing
anomalies.

A fully consistent rule base should only contain disjoint rules. Disjoint rules are
either completely disjoint or partially disjoint. If the rule base only contains dis-
joint rules, the order of the rules in the rule base is immaterial and the anomalies
described above will not occur [30, 32, 38, 39, 40, 41]). However, due to several
confounds (e.g., unclear requirements, faulty change management processes, lack of
organization, manual interventions, and system complexity) [10], the rule base will
include correlated, exactly matching, and inclusively matching rules. Combined
with the order-sensitivity of the rule base, changes to the rule base (e.g., a rule’s ad-
dition or removal) can result in unforeseen side effects. To be confident that a change
will not introduce unintended side effects, the entire rule base needs to be analyzed.
Therefore, the impact of the change is proportional to the change and the size of the
system, which contains the complete rule base. According to NS theory, this is a CE.
As a result, a firewall rule base containing rules other than disjoint rules is unstable
under change.

2.3 Size of the Problem Space

For any given network comprised of clients and hosts, a firewall can contain many
rules. In this section we will operationalize the size of the design space as the num-
ber of rules that could be defined on a firewall of a given network. The size of the
design space thus logically provides insight into the problem space.

2.3.1 Formal Definitions of Rule Base Components

Let N represent a Layer 4 TCP/IP-based network in which two groups of network-
connected resources can be defined:

• The hosts, providing network services via TCP/IP ports.

• The clients, requiring access to the services offered by the host.

Let N contain a firewall with rule base F, that is configured in such a way that only
certain clients have access to certain services on certain hosts.

Let Port represent a Layer 4 TCP/IP defined port with the following attributes:

• Port.name = the name of the port.

18 Chapter 2. Problem Description

• Port.protocol = the layer 4 TCP/IP protocol, being one of the following two
values: TCP or UDP.

• Port.number = the number of the port, represented as an integer ranging from
1 to 216.

Let P represent the list of Ports, of length = pj .
P[1] ... P[pj].
P[j] contains a Port.
1 ≤ j ≤ pj.

Let Service represent a network service accessible via a list of layer 4 TCP/IP ports,
with the following attributes:

• Service.name = the name of the service.

• Service.ports = the list of ports = P.

Let S represent a list of Services, of length = sj.
S[1] ... S[sj].
S[j] contains a Service.
1 ≤ j ≤ sj.

Let Host represent a network host that provides services, with the following at-
tributes:

• Host.name = the Fully Qualified Domain Name (FQDN) of the network host.

• Host.IP = the IP address of the network host.

Let H represent a list of Hosts, of length = hj. The length of H is a function of the
network N. 

H[1] ... H[hj].
H[j] contains a Host.
1 ≤ j ≤ hj.
hj = fh(N)

Let Client represent a network client that requires access to hosted services, with the
following attributes:

• Client.name = the FQDN of the network client.

• Client.IP = the IP address of the network client.

Let C represent a list of Clients, of length = cj. The length of C is a function of the
network N. 

C[1] ... C[cj].
C[j] contains a Client.
1 ≤ j ≤ cj.
cj = fc(N)

Let R represent a firewall rule, with the following attributes:

• R.Source = a list of Clients Cs of length = csj, where

2.3. Size of the Problem Space 19

– 1 ≤ csj≤ cj

– Cs ⊂ C

• R.Destination = a list of Hosts Hd of length = hdj, where

– 1 ≤ hdj≤ hj.

– Hd ⊂ H.

• R.Ports = a list of Ports = a Service Sp

– where Sp ∈ S[sj].

• R.Action = either “Allow” or “Deny”.

Let F, representing a list of rules R of length = fj, be the ordered firewall rule base F

• F[1] ... F[fj]

• F[m] contains a firewall rule R

• 1 ≤ m ≤ fj

• F is order-sensitive. If Rx is a firewall rule at location y in F, then the behavior
of the firewall can be different if Rx is located at position z instead of y, where
z:1→ fj and z ̸= y. Whether or not the behavior is different depends on the
relation Rx has with the other rules of F.

Example:
Suppose we have a rule base containing one rule R1:

• Source: 1.1.1.1

• Destination: 1.1.2.1

• Protocol/port: TCP/100-200

• Action: Allow

Suppose we are adding a rule R2:

• Source: 1.1.1.1

• Destination: 1.1.2.1

• Protocol/port: TCP/150

• Action: Deny

R2 is correlated to R1 as there is a full match in source and destination, an overlap
in protocol/port, and difference in action.
If R2 is added before R1, then the rule R2 will execute the desired action (i.e., Deny).
If R2 is added after R1, then the rule R2 will not have the desired effect, as R2 does
not get activated.

20 Chapter 2. Problem Description

2.3.2 Combinatorics

Ports

Port numbers are represented by 16-bit binary numbers and thus range from 1 to 216.
Assuming that only TCP and UDP protocols are considered for OSI Layer 4 filtering,
the possible number of values for Ports is equal to 2.216 = 217.

Services

S is the list of all possible services delivered via all ports exposed on the network N.
Smax is the largest possible list of services, with length = sjmax, in which all possible
combinations of possible Ports are being used, where

sjmax =
217

∑
k=1

(
217

k

)
(2.1)

Hosts

The size of the list H, hj, is a function of the network N and is expressed as hj = fh(N).
Hmax is the list of all possible lists of hosts that are part of H. The length of this list is
hjmax, where

hjmax =
hj

∑
a=1

(
hj
a

)
(2.2)

and where hj = fh(N).

Services on Host

The maximum number of Hosts/Services combinations = hjmax.sjmax =

hjmax.sjmax =

(
hj

∑
a=1

(
hj
a

))
.

(
217

∑
k=1

(
217

k

))
(2.3)

where hj = fh(N).

Clients

The size of the list C, cj, is a function of the network N, and is expressed as cj = fc(N).
Cmax is the list of all possible lists of clients that are part of C. The length of this list
is cjmax where

cjmax =
cj

∑
a=1

(
cj
a

)
(2.4)

where cj = fc(N).

Rules and Rule Base

In a rule R,

• R.Source can contain any element of Cmax.

2.4. Ontological Model of a Firewall Rule Base 21

• R.Destination can contain any element of Hmax.

• R.Ports can contain any element of Smax.

• R.Action is the maximum number of action combinations, being 2 (“Allow” or
“Deny”)

The firewall rule base Fmax contains all possible rules that can be made with Cmax,
Hmax and Smax

f jmax = 2.cjmax.hjmax.sjmax (2.5)

f jmax = 2.

(
cj

∑
a=1

(
cj
a

))
.

(
hj

∑
a=1

(
hj
a

))
.

(
217

∑
k=1

(
217

k

))
(2.6)

where cj = fc(N) and hj = fh(N)

Example: Suppose we have a network containing ten clients (cj = 10), five servers
(hj = 5), and on each server, five services are defined (sj=5). According to the above
combinatorics, the solution space has a size of 1.196.206 rules.

Fmax is the possible design space for a rule base, and has a phenomenal size. It
represents the number of rules you can choose from when designing a filtering ac-
tion on a firewall. Multiple rules can deliver one filtering requirement. Choosing
the optimally evolvable rule is a considerable challenge. As the network grows and
fc(N) and fh(N) grow, choosing the optimally evolvable firewall rule from the design
space becomes even more difficult. The design space must be consciously reduced
by means of design restrictions.

2.4 Ontological Model of a Firewall Rule Base

In this section we propose an ontological model for a firewall rule base. The model
will contain the essential information required to define a filtering rule. Such a
model will help us in subsequent sections to compare the ontological model (by
default independent of implementation) with the implementation of such model in
firewalls. Analysing the ontological model and implementation model will help us
in defining the evolvability issues of the firewall rule base.

2.4.1 The Ontological Model

The analysis of a firewall rule base’s ontology is undertaken employing the DEMO
FACT model [44]. This simple, straightforward ontological modeling method suffi-
ciently reveals the issues we intend to illuminate. In terms of the scope of a security
department managing the firewalls, the “create firewall rule” transaction is consid-
ered an ontological transaction. During the request phase, information must be pro-
vided to the executor, corresponding with the filtering objective: source, destination,
service, and action.

The ontology of a rule base is expressed in a DEMO FACT model, as shown in Fig-
ure 2.2. For simplicity of explanation, details regarding value types and the transac-
tions related to the coming about of facts and products are excluded. There are multi-
ple ways to identify a source or a destination depending on whether the network re-
source(s) are identified by their IP address(es) (IPRESOURCE,
IPRESOURCEGROUP)

22 Chapter 2. Problem Description

FIGURE 2.2: Ontological FACT model of a firewall rule base

2.5. Reverse-Engineering the Implementation Model 23

or by their logical name(s) (HOST, HOSTGROUP). SOURCE and DESTINATION are
generalizations of those different resource identifications. Note that the same net-
work resource can be both a source and a destination.
A similar reasoning holds for SERVICERESOURCE and SERVICERESOURCEGROUP.
A SERVICERESOURCE is the aggregation/Cartesian product of PROTOCOL and
PORTRANGE. A RULE is the aggregation/Cartesian product of the different entity
types comprising a rule.

2.5 Reverse-Engineering the Implementation Model

An ontology is an implementation independent model and needs to be translated
towards a technology-implementable solution. Certain design decisions must be
made during this conversion. The FACT model shown in Figure 2.2 contains gen-
eralization relations or (inverse) inheritance relations. The manner by which inheri-
tance relations are translated towards an implementation can profoundly impact the
evolvability of the implementation model [45].

Firewall vendors neither share nor publish the firewall’s internal data model ex-
plicitly. We will reverse-engineer the implemented data model based on firewall
configuration exports. Exports were made from three different firewalls types used
inside the Engie network.

Three additional firewalls, built by industry leaders, shall be discussed:

• Fortinet

• Palo Alto

• Check Point

Based on these exports, we attempt to reverse-engineer the firewall data model. For
simplicity of illustration, we will focus exclusively on the TCP/UDP protocols and
exclude export information of other protocols of the OSI Layer 4 (e.g., ICMP).

2.5.1 The Fortinet Firewall

Service Objects

The Service objects export contains a data definition header. The relevant fields are:
Name (reference name), Protocol (TCP or UDP), and Destination Port (one or more
ports or port ranges). Our analysis of the various objects yields the following obser-
vations:

• No formal naming convention for Service objects.

• No unique Service definitions.

• No disjoint Service definitions.

ServiceGroup Objects

The ServiceGroup objects export contains a data definition header. The relevant
fields are: Name (reference name) and Services (one or more Service objects). Our
analysis of the various objects yields the following observations:

24 Chapter 2. Problem Description

• No formal naming convention for ServiceGroup objects.

• No unique ServiceGroup definitions.

• No disjoint ServiceGroup definitions.

• As ServiceGroups are an aggregation of services, ServiceGroup and Service
objects are by design not disjoint.

Address Objects

The Address objects export contains a data definition header. The relevant fields are:
Name (reference name), Type (a Fully Qualified Domain Name (= DNS-resolvable
name) or IP Netmask (/32 for a single IP or a /x for a range of IP addresses) or an IP
range (from a.b.c.d to a.b.c.f) and Address (the address according to one of the three
types). Our analysis of the various objects yields the following observations:

• No formal naming convention for Address objects.

• No unique Address definitions.

• No disjoint Address definitions.

AddressGroup Objects

The AddressGroup objects export contains a data definition header. The relevant
fields of this header are: Name (reference name), Address (an Address Object). Our
analysis of the various objects yields the following observations:

• No formal naming convention for AddressGroup objects.

• No unique AddressGroup definitions.

• No disjoint AddressGroup definitions.

• As AddressGroups are an aggregation of addresses, AddressGroup and Ad-
dress objects are, by definition, not disjoint.

Rule Objects

The Rule objects export contains a data definition header. The relevant fields are:
Nr (location in the rule base (1 = top)), Name (reference name), SourceAddress (an
Address object and/or an AddressGroup object referenced via its Name), Desti-
nationAddress (an Address object and/or an AddressGroup object referenced via
its Name), Services (a Services object and/or ServiceGroup object referenced via its
Name), Action (Allow or Deny). Our analysis of the various objects yields the fol-
lowing observations:

• Source- and DestinationAddress: Source- and DestinationAddress objects con-
tain AddressGroup objects and/or Address objects.

• Source- and DestinationAddress: AddressGroup objects or Address objects
can be used for both SourceAddress and DestinationAddress.

• The rule base allows both Allow and Deny rules at any location in the rule base.
The firewall approach enforces neither the usage of a white-list (rule base only
contains "Allow" rules and a default "Deny" rule at the end) nor a black-list
(rule base only contains "Deny" rules and a default "Allow" rule at the end).

2.5. Reverse-Engineering the Implementation Model 25

Implementation Model of a Fortinet Firewall

Based on the firewall export, we can reverse-engineer the implementation model of
the Fortinet firewall. We find that:

• The ontological concepts PROTOCOL and PORTRANGE have no equivalent
in the Fortinet implementation model. They are directly aggregated in the
Fortinet Service object.

• The ontological concept of SERVICERESOURCE does not exist. It is absorbed
in the Fortinet Service object.

• The ontological concept of SERVICERESOURCEGROUP does not exist given
that the ontological concept of SERVICERESOURCE does not exist.

• The Fortinet object ServiceGroup aggregates Service objects. This is not the
same as the relation between the ontological concepts SERVICERESOURCE
and SERVICERESOURCEGROUP. SERVICERESOURCE is a combination of a
PORTRANGE and a PROTOCOL instance and a SERVICERESOURCEGROUP
instance is a collection of SERVICERESOURCEs. Conversely, the Service ob-
ject aggregates PORTRANGE, PROTOCOL, SERVICERESOURCE and SER-
VICERESOURCEGROUP. The ServiceGroup object is a collection of Service
objects.

• The ontological concepts SOURCE and DESTINATION do not exist. They are
directly aggregated in the Rule object.

• The ontological concepts IPRESOURCE, IPRESOURCEGROUP, HOST and HOST-
GROUP do not exist. The implementation object Address aggregates IPRESOURCE
and HOST, while the implementation object AddressGroup is a collection of
Address objects and thus an aggregation of both HOSTGROUP and IPRESOURCE-
GROUP.

• An instance of the ontological concept of RULE is made up of an instance of
a SOURCE, a DESTINATION, and a SERVICE. In the Implementation Rule
object, the source is defined in the rule, and not first outside the rule via the
ontological SOURCE concept.

• Looking at the implementation objects Address and AddressGroup, one can-
not determine whether or not those play the role of sources or destinations in
rules.

Figure 2.3 represents the derived implementation model as a set of tables and rela-
tionships between the tables. The various objects found in the firewall export corre-
spond to rows within these tables.

2.5.2 The Palo Alto Firewall

Service Objects

The Service objects export contains a data definition header. The relevant fields are:
Name (reference name), Protocol (TCP or UDP), and Destination Port (one or more
ports or port ranges). Our analysis of the various objects yields the following obser-
vations:

• No formal naming convention for Service objects.

26 Chapter 2. Problem Description

FIGURE 2.3: Implementation model of a Fortinet firewall

• No unique Service definitions.

• No disjoint Service definitions.

ServiceGroup Objects

The ServiceGroup objects export contains a data definition header. The relevant
fields of this header are: Name (reference name) and Services (one or more Service
objects). Our analysis of the various objects yields the following observations:

• No formal naming convention for ServiceGroup objects.

• No unique ServiceGroup definitions.

• No disjoint ServiceGroup definitions.

• As ServiceGroups are an aggregation of services, ServiceGroup and Service
objects are, by definition, non disjoint.

Application Objects

The Application objects export contains a data definition header. The relevant fields
are: Name (reference name), Protocol (TCP or UDP), and Destination Port (one or
more ports or port ranges). Our analysis of the various objects yields the following
observations:

• The list of Application objects is a standard industry list that is a component of
the firewall default configuration. It contains the names of the known applica-
tions and the standard assigned port to the applications. Example: Application
= Minecraft, Protocol = TCP 80, 443, 25565.

• In addition to Name and Protocol, each application is assigned to a category,
subcategory, technology, and risk level. Example: Application = Minecraft,
Category = media, Subcategory = game, Technology = browser-based, risk
level = 2.

• The list is editable, enabling the addition of custom-developed applications or
non-standard usage of ports.

2.5. Reverse-Engineering the Implementation Model 27

• No formal naming convention for Application objects.

• Different application can use the same ports.

• Application objects are not disjoint with respect to Service definitions.

ApplicationGroup Objects

The ApplicationGroup objects export contains a data definition header. The relevant
fields are: Name (reference name) and Applications (one or more Application Object
names). Our analysis of the various objects yields the following observations:

• This list is customer created and aggregates applications into a meaningful
package. Example: a group is created that contains all individual applications
required for proper active directory function (dsn, kerberos, ntp, etc.).

• The members of this group are applications from the Application objects list.

• No formal naming convention for ApplicationGroup objects.

• No unique ApplicationGroup definitions.

• No disjoint ApplicationGroup definitions.

• No disjoint ApplicationGroup and ServiceGroup definitions.

• As ApplicationGroups are an aggregation of Applications, ApplicationGroup
and Application objects are by design overlapping.

Address Objects

The Address objects export contains a data definition header. The relevant fields are:
Name (reference name), Type (a Fully Qualified Domain Name (= DNS-resolvable
name) or IP Netmask (/32 for a single IP or a /x for a range of IP addresses) or an IP
range (from a.b.c.d to a.b.c.f) and Address (the address according to one of the three
types). Our analysis of the various objects yields the following observations:

• No formal naming convention for Address objects.

• No unique Address definitions.

• No disjoint Address definitions.

AddressGroup Objects

The AddressGroup objects export contains a data definition header. The relevant
fields are: Name (reference name), Address (an Address Object). Our analysis of the
various objects yields the following observations:

• No formal naming convention for AddressGroup objects.

• No unique AddressGroup definitions.

• No disjoint AddressGroup definitions.

• As AddressGroups are an aggregation of addresses, AddressGroup and Ad-
dress objects are, by definition, overlapping.

28 Chapter 2. Problem Description

FIGURE 2.4: Implementation model of a Palo Alto firewall

Rule Objects

The Rule objects export contains a data definition header. The relevant fields are: Nr
(location in the rule base (1 = top), Name (reference name), SourceAddress (an Ad-
dress object and/or an AddressGroup object referenced via its Name), Destination-
Address (an Address object and/or a AddressGroup object referenced via its Name),
Services (a Services object and/or ServiceGroup object referenced via its Name), Ap-
plication (an Application object and/or ApplicationGroup object referenced via its
name, Action (Allow or Deny). Our analysis of the various objects yields the follow-
ing observations:

• Source- and DestinationAddress: Source- and DestinationAddress contain Ad-
dressGroup objects and/or Address objects.

• Source- and DestinationAddress: AddressGroup objects or Address objects
can be used for both SourceAddress and DestinationAddress.

• The rule base allows both Allow and Deny rules at any location in the rule
base. The firewall enforces neither the usage of a white-list nor a black-list
approach.

• When the Service field contains the value "Application-Default", the Applica-
tion field is used to determine the protocol and port.

Implementation Model of a Palo Alto Firewall

Based on the firewall export, we can reverse-engineer the implementation model of
the Palo Alto firewall. We find that:

• The ontological concepts PROTOCOL and PORTRANGE have no equivalent
in the Palo Alto implementation model. They are directly aggregated in the
Palo Alto Service and Application objects.

• The ontological concept of SERVICERESOURCE does not exist. It is encom-
passed by Palo Alto Service and Application objects.

2.5. Reverse-Engineering the Implementation Model 29

• The ontological concept of SERVICERESOURCEGROUP does not exist, given
that the ontological concept of SERVICERESOURCE does not exist.

• The Palo Alto ServiceGroup object aggregates Service objects and Application-
Group Application objects.

• The Palo Alto Service and Application objects both represent the ontological
concept of SERVICERESOURCE.

• The ontological concepts SOURCE and DESTINATION do not exist. They are
directly aggregated in the Rule object.

• The ontological concepts IPRESOURCE, IPRESOURCEGROUP, HOST and HOST-
GROUP do not exist. The implementation object Address aggregates IPRESOURCE
and HOST, while the implementation object AddressGroup is a collection of
Address objects and thus an aggregation of both HOSTGROUP and IPRESOURCE-
GROUP.

• An instance of the ontological concept of RULE is comprised of an instance
of a SOURCE, a DESTINATION and a SERVICE. In the implementation Rule
object, the source is defined in the rule, and not first outside the rule via the
ontological SOURCE concept.

• Examining the implementation objects Address and AddressGroup, one can-
not determine whether or not those play the role of sources or destinations in
rules.

Figure 2.4 shows the derived implementation model as a set of tables and relation-
ships between the tables. The various objects located in the firewall export map
correspond to rows within these tables.

2.5.3 The Check Point Firewall

Service<Protocol> Objects

The Service objects export is comprised of two sub exports: ServiceTCP and Ser-
viceUDP. The sub exports have a data definition header. The relevant fields of this
header are: Name (reference name), Type (TCP/UDP), and Destination Port (one or
more ports or port ranges). Our analysis of the various objects yields the following
observations:

• The Protocol field is pre-filled with TCP or UDP, depending on membership of
ServiceTCP or ServiceUDP.

• No formal naming convention for Service objects.

• No unique Service definitions.

• No disjoint Service definitions.

ServiceGroup Objects

The ServiceGroup objects export contains a data definition header. The relevant
fields are: Name (reference name) and Services (one or more Service objects) Our
analysis of the various objects yields the following observations:

30 Chapter 2. Problem Description

• No formal naming convention for ServiceGroup objects.

• No unique ServiceGroup definitions.

• No disjoint ServiceGroup definitions

• As ServiceGroups are an aggregation of services, ServiceGroups and Service
objects are, by definition, not disjoint.

Address Objects

The Address objects export contains three sub objects and subsequent exports: Host,
Network and AddressRange. The sub-exports have Name (reference name) as a
common field. Host is a sub-object with IP as an attribute. Network is a sub-object
with network range and subnetmask as attributes. AddressRange is a sub-object
with startIP and endIP as attributes. Our analysis of the various objects yields the
following observations:

• No formal naming convention for Host, Network, or AddressRange objects.

• No unique Host, Network, or AddressRange definitions.

• No disjoint Address (Host, Network, AddressRange) definitions.

Group Objects

The Group objects are aggregations of the three different Address objects (Network,
AddressRange, Host). The export contains a data definition header. The relevant
fields are: Name (reference name), members (a Host, Network or Address Range
object referenced by name). Our analysis of the various objects yields the following
observations:

• No formal naming convention for Group objects.

• No unique Group definitions.

• No disjoint Group definitions.

• As Groups are an aggregation of hosts and networks, Group, Host, Network
and AddressRange objects are, by definition, not disjoint.

Rule Objects

The Rule objects export contains a data definition header. The relevant fields of this
header are: Nr (location in the rule base (1 = top), Name (reference name), SourceAd-
dress (an Address object and/or a Group object referenced via its Name), Destina-
tionAddress (an Address object and/or a Group object referenced via its Name), Ser-
vices (a Services object and/or ServiceGroup object referenced via its Name), Action
(Allow or Deny). Our analysis of the various objects yields the following observa-
tions:

• Source- and DestinationAddress: Source- and Destination Address contain
Group objects and/or Address objects.

• Source- and DestinationAddress: Group objects and/or Address objects can
be used for both SourceAddress and DestinationAddress.

2.5. Reverse-Engineering the Implementation Model 31

FIGURE 2.5: Implementation model of a Check Point firewall

• The rule base contains both Allow and Deny rules, mixing a white-list and
black-list approach.

Implementation Model of a Check Point Firewall

Based on the firewall export, we can reverse-engineer the implementation model of
the Check Point firewall. We find that:

• The ontological concepts PROTOCOL and PORTRANGE are implemented as
ServiceUDP and ServiceTCP objects on the Check Point

• The ontological concept of SERVICERESOURCE does not exist. It is encom-
passed by the Check Point ServiceGroup object.

• The ontological concept of SERVICE is implemented as the ServiceGroup ob-
ject.

• The ontological concept of SERVICERESOURCEGROUP is also implemented
as the ServiceGroup object.

• The Check Point ServiceGroup object, combines both SERVICESOURCE and
SERVICERESOURCEGROUP.

• The ontological concepts SOURCE and DESTINATION do not exist. They are
directly aggregated in the Rule object.

• The ontological concepts IPRESOURCE, IPRESOURCEGROUP are implemented
as the Network and AddressRange objects.

• The ontological concepts of HOST and HOSTGROUP are implemented as Host
and Group objects.

• An instance of the ontological concept of RULE is comprised of an instance
of a SOURCE, a DESTINATION, and a SERVICE. In the implementation Rule
object, the source is defined in the rule, and not first outside the rule via the
ontological SOURCE concept.

32 Chapter 2. Problem Description

FIGURE 2.6: Overview of ontological and implementation concepts

• When considering the implementation objects Network, AddressRange, Host
and Group, one is unable to determine whether or not these play the role of
sources or destinations in rules.

2.5.4 Overview Implementation Models

Figure 2.6 provides an overview of the ontological concepts and implementation
concepts.

2.6 Evolvability Issues Due to the Data Model

According to NS theory, a modular structure will be free of CE with respect to a set
of anticipated changes when each module respects the four NS theorems – SoC, SoS,
AVT, and DVT. The SoC condition is the most relevant in our case.

From Section 2.4 we may deduce that a source, a destination, and a service can be
specified in multiple ways as they are generalizations of other types. At the time of
instantiation, the same logical concept of a network resource can be represented by
different objects, thus resulting in overlap(s). This overlap could lead to non-disjoint
rules. The ontology does not include restrictions that would favor non-disjoint rule
creation. When implementation follows this ontology, it would be expected that no
restrictions will be present to avoid the creation of non-disjoint rules, meaning that
there already exists something fundamentally wrong with the ontological model.

From Section 2.5 we may deduce that SoC between the different rule base objects is
not respected. In a Fortinet firewall, Service and ServiceGroup address the same con-
cern, given that they form a protocol/port(s) pair. In a Palo Alto firewall, this con-
cern is represented by Service, ServiceGroup, Application, and ApplicationGroup.
The Check Point respects a separation between various protocols via the usage of
ServiceTCP and ServiceUDP, but allows violation of SoC via ServiceGroup. In a
Fortinet and Palo Alto firewall, Address and AddressGroup represent the same con-
cern, given that they refer to network resources. The different types of network
resources, i.e. a host, a network and an address range, are aggregated into Address

2.7. Problem Overview 33

and AddressGroup. The Check Point firewall separates the network resource types
into Host, Network and AddressRange sub-objects, but aggregates them in Group.
Within a rule, the concern of being a source or a destination, is combined into Ad-
dress and AddressGroup for the Fortinet and Palo Alto firewalls, and in Host, Net-
work, AddressRange, and Group in the Check Point firewall.

The disrespect of SoC represents a form of coupling inside the rule base that be-
comes visible when the model is being instantiated. Different objects can represent
the same thing, requiring a detailed analysis of all rules in the rule base containing
those objects. Only then can we understand the context and decide on how to reflect
the desired change. All the firewall objects aggregate in the rule objects. Seemingly
different rules could, in fact, address the same source, destination, and service, as
these can be made with different objects that actually represent the same thing.

The naming of the Service, ServiceGroup, Address, AddressGroup, etc. objects is
independent of the objects’ content. They are considered as two concerns that can
evolve independently from one other. Similar to the best practice within the field of
programming to assign names to variables that are anthropomorphic to what they
represent, so should the naming convention of rule-based objects be anthropomor-
phic to their content. If name and content deviate from one another, incorrect objects
can be chosen to make rules, thus creating incorrect rules. The separation of naming
and content results in objects with different names, yet both representing the same
item. Changes to the resource, such as a new IP, need to be propagated to all objects
representing that resource. As one cannot deduce this from the design of the objects,
it means that at run-time, it will be necessary to search through the rule base objects
in order to determine the impact. The change will ripple through the system and is
a function of the size of the system; thus, it is a CE.

The implemented rule base’s design violates SoC in two ways: 1) it combines differ-
ent concerns, thus introducing additional coupling, and 2) it decomposes concerns,
thus violating cohesion. As changes to names, IP masks, IP ranges, ports, and pro-
tocols are made over time, resulting violations of SoC will lead to ripple effects in
the configuration of the firewall rule base. These can result in non-disjoint rules and
become CEs with respect to the addition and deletion of rules in the rule base.

Given the above, at this point, we may conclude that neither the ontological model
nor the implementation model of firewalls facilitates the creation of disjoint rules.

2.7 Problem Overview

From the previous sections, we may conclude that:

• Relationships between rules, in combination with the inherent design of the
firewall whereby its rule base is order-sensitive, result in anomalies.

• The ontological model of a firewall rule base, based on actual information pro-
vided when a firewall rule is created, contains elements that do not favor the
establishment of an evolvable rule base.

• The current implementation models of three major firewall vendors do not
contain mechanisms that favor the evolvability of the rule base.

34 Chapter 2. Problem Description

• Neither the ontological model nor the implementation model embeds explicit
design criteria and conventions. As a result, any rule from the full design space
may be used without favoring rules that lead to an evolvable rule base.

35

Chapter 3

Artifact Requirements

In this chapter, we explain the different requirements related to building an evolv-
able rule base.
In Section 3.1 we elaborate on the need to eliminate the impact of order sensitivity
in a rule base, and in Section 3.2 we explain the need for strict naming conventions
of the group objects. Although we anticipate a fine-grained rule base, we nonethe-
less need to limit the number of rules. We elaborate on minimizing the number of
rules in Section 3.3. In Section 3.4 we provide a rationale for the need to generate a
rule base that is compliant with the Zero Trust security policy. Section 3.5 provides
a rationale for the need for a green-field artifact. The green-field artifact is a set of
design criteria for the creation of an evolvable rule base in accordance with previ-
ous requirements, while in Section 3.6 we express the need for a brown-field artifact
that will convert a non-evolvable rule base into an evolvable rule-base. Section 3.7
summarizes all the requirements.

3.1 Eliminating Order Sensitivity

In Section 2.2, we have shown that rules with relationships other then disjoint or
partially disjoint can result in rule base anomalies. We can thus only allow disjoint
and partial disjoint rules in our rule base (hereon referred to as disjoint rules). By
exclusively allowing these kind of rules, we eliminate the order sensitivity of the
rule base. Rules can be added and removed anywhere in the rule base, without
concern for unintended negative consequences. This is the most important design
requirement for the artifact.

3.2 Group Object Naming Conventions

In Section 2.5, we have shown that the inconsistent naming of group objects has a
negative impact on evolvability. While the introduction of group objects is intended
to improve manageability (names compared to numbers), without proper naming
conventions, additional complexity is easily introduced. The same item (source,
destination, service) being represented by different group objects, or different items
(source, destination, service) being represented by nearly the same group objects
(case sensitivity of names, spelling errors, different delimiters), can result in invok-
ing the wrong objects when making a rule, or introduce configuration drift between
rules, eventually resulting in rules that do not match their intent.

The artifact must impose naming conventions such that group objects can only ad-
dress one concern and all ambiguity is removed as to when to use a group. This

36 Chapter 3. Artifact Requirements

will eliminate possible configuration drift (different groups, same concern, different
content).

3.3 Minimize the Number of Rules in the Rule Base

In Section 2.1, we have shown that, both in the literature and in industry reports,
there has been a focus in minimizing the rule base. It makes perfect sense to mini-
mize the number of rules, since fewer rules means more efficient filtering. However,
compacting a rule base can result in a non-evolvable rule base, in which it becomes
increasingly difficult to add/remove/change rules. There is also a risk that a rule
no longer matches its original intent but rather becomes an aggregation and combi-
nation of multiple intents. The function-construction gap increases, resulting in rule
base complexity, where it becomes difficult to interpret the system by looking at its
configuration.

Removing anomalies and making disjoint rules will lead to more rules. As each
concern is allocated its own discrete rule, a more fine-grained rule base will emerge
— an outcome which NS theory predicts. While this is positive with respect to evolv-
ability, doing so may also introduce negative impacts to firewall performance.

In Section 2.3.2, the design space of a firewall in a specific context was proposed.
This design space includes both the rules that do and do not favor evolvability. Of
all the rules that favor evolvability, there is a subset that will always work but which
maximizes size: a rule for each client, each host, each service, and each action. It is
also admissible to have a subset that aggregates some clients, some hosts, and some
services, while still being disjoint from each other and respecting the same filter-
ing logic. This subset will necessarily be smaller than the previous subset. As it is
smaller, we consider it more desirable for performance reasons. Hence the need to
have an evolvable rule base of a minimal size as a design criteria.

3.4 Zero Trust

A rule has three filtering parameters: source, destination, and service. The same
filtering result may be accomplished by different configurations of those three pa-
rameters. In Section 2.3.2 we presented the combinatorics underlying this as well as
the difficulty of selecting rules that favor evolvability in the absence of design crite-
ria.

Forrester advocates the usage of a Zero Trust (ZT) model [14, 15] [43], since design
criteria:

• Ensure all resources are accessed securely, regardless of location and hosting
model,

• Adapt a “least privilege” strategy and strictly enforce access control,

• Inspect and log all traffic for suspicious activity.

The working assumption in the case of protecting network-connected resources is
that all traffic towards those resources is considered a threat and must be inspected
and secured. A network-connected resource should only expose those services via

3.5. Requirements for a Green-Field Artifact 37

the network, which are minimally required. Additionally, each network-connected
resource should be allowed access only on an as-needed basis.

A network-connected resource can take various forms. It can be defined as a sin-
gle machine (host) with a unique IP address, a VLAN consisting of a range of IP
addresses, or an IP subnet representing a whole address space. In the ontological
model discussed in Section 2.4 we see this as well. The type of network-connected
resource being protected determines the optimal type of rule. The definition of the
destination as either a host, VLAN or subnet, in combination with the delivered ser-
vices, will enable the expression of the allowable access.

The artifact must account for a "Zero Trust" strategy: rules in the rule base express
the explicit granting of access to a resource. If there is no rule in the rule base that
explicitly grants access, then access should be denied. This kind of rule base is also
known as a white-list. Not on the list = Access Denied. The rule base will only
contain rules that have "Allow" as a filtering action, with the exception of the final
rule of the rule base. The final rule is the default "Deny" rule. If no matching rule is
found, traffic is not allowed.

The opposite of a white-list is a black-list. In such a list, the end of the rule base
contains the default "Allow" rule and all preceding rules specify all the Deny rules.

Network-connected resources normally offer far fewer services relative to the max-
imum amount of 217 (131.072) possible services . If a ZT policy is applied, it makes
more sense to expressly provide access via a white-list instead of a black-list, given
that a white-list will contain fewer rules as compared to a black-list.

3.5 Requirements for a Green-Field Artifact

In the existing firewall l iterature, we found no set of design criteria beyond "mini-
mize your rule base, minimize overlap". Our objective is to provide greater speci-
ficity, as well as to provide design criteria that may be systematically applied, inde-
pendent of rule base size. If we were to build a firewall rule base from scratch from
a green-field, we could follow these design criteria and be confident of having an
evolvable rule base with respect to a set of anticipated changes, such as the addition,
removal, and modification of r ules. We call this the green-field artifact and it must
adhere to all previous expressed requirements.

3.6 Requirements for a Brown-Field Artifact

A green-field artifact is a rare l uxury. The "swamp of practice" consists of firewalls
that present a variety of evolvability issues. In small rule bases, non-disjoint rules
are not overly concerning. Where rule bases are small, it is possible for the firewall
administrator to oversee the problem and reshuffle the rules as r equired. As rules
are added, however, they become increasingly difficult to m anage. As system size
increases, the undesired positive feedback mechanism of non-disjoint rules is exacer-
bated, ultimately resulting in increasingly unstable systems with each newly-added
rule.

Our objective is to rejuvenate the rule bases of those firewalls, converting them into

38 Chapter 3. Artifact Requirements

a rule base that adheres to the green-field design criteria and that from that point
on can be managed and will continue to evolve in line with the green-field artifact.
We call this the brown-field algorithm and it must adhere to all previous expressed
requirements.

The existing literature includes examples of algorithms that will look for and re-
solve anomalies. However, there are no examples of algorithms that also install the
criteria to keep the rule base free of anomalies. Instead, every change to the rule
base requires a full re-analysis of the rule base and a corresponding resolution of
anomalies introduced by the new rule.

3.7 Requirements Overview

Based on all that has been discussed in previous sections, we may summarize the
requirements for our artifacts as follows:

• R1: Only fully-disjoint and partial-disjoint rules.

• R2: A consistent naming convention for all firewall objects.

• R3: Minimization of the number of rules, while maximizing evolvability.

• R4: Application of a white-list approach.

• R5: Creation of a green-field artifact, consisting of design rules for an evolvable
rule base, adhering to R1 through R4.

• R6: Creation of a brown-field artifact, converting an existing non-evolvable
rule base into a rule base that responds to the green-field artifact specifications
(R5).

39

Chapter 4

Green-Field Artifact Creation and
Demonstration

Based on the artifact requirements outlined in the previous chapter, the present
chapter discusses the design of the green-field artifact. In Section 4.1, we convert
the requirements into design criteria, which are then applied to the green-field arti-
fact - a method that is presented in Section 4.2. In Section 4.3, we demonstrate the
artifact by applying a set of anticipated changes to a rule and rule base and confirm
whether or not they result in CEs. The findings of this chapter have been published in
[27] and [28].

4.1 Designing an Evolvable Rule Base

From Chapter 2 we know that: a firewall rule base is order-sensitive; relationships
between rules are possible and represent coupling; disjoint rules are not order-sensitive
with respect to each other; if all rules in the rule base are disjoint and a new disjoint
rule is added, then this rule can be added at any location in the rule base.

If the entire firewall rule base needs to be investigated to determine whether or not a
rule is disjoint to all existing rules, then a CE is being introduced at run-time. In-
troducing a new rule to, or removing a rule from the system should result in work
that is proportional to the newly-required functionality and not into work that has
no logical link to the required functionality and that requires searching throughout
the entire rule base. According to NS theory, the impact of the change should be
proportional to the nature of the change itself, and not proportional to the system to
which the change is applied.

Disjoint rules have no overlap in source or destination or services (combination of
ports). The following combinations are possible:

• No overlap in sources - overlaps of destinations and services are ignored.

• No overlap in destinations - overlaps of sources and services are ignored.

• No overlap in ports - overlaps of sources and destinations are ignored.

• No overlap in source-destination combination - overlaps of services are ig-
nored.

• No overlap in source-ports combinations - overlaps of destinations are ig-
nored.

40 Chapter 4. Green-Field Artifact Creation and Demonstration

• No overlap in destination-ports combinations - overlaps of sources are ig-
nored.

• No overlap in source-destination-services combination.

Consider a rule R comprised of the following components:

• Cs representing the Source, where Cs⊂ Cmax.

• Hd representing the Destination, where Hd⊂ Hmax.

• Sp representing the Ports, where Sp ∈ Smax.

• Action is to be “Allow” as each rule in the rule base explicitly provides access
to allowed services on allowed hosts.

• R = (Cs, Hd, Sp, “Allow’)

Cs is fc(N) and Hd is fh(N). The network N, the hosts Hd and the clients Cs, are
context-dependent. We are unable to generalize from those variables. Attempting to
structure Cs and Hd in a manner that allows for disjoint rules starting from this vari-
able will not yield anything useful. On the other hand, Sp represents the ports. The
number of ports is bound and the values are generic over all possible rule bases. We
can now calculate the combinatorics related to port. Out of all possible port combi-
nations, we are only interested in those port/service groups that do not overlap (i.e.,
are disjoint).

Let us consciously restrict Sp to Su, such that Su exclusively contains disjoint ser-
vices.

{
∃!Su[m] in Su for m:1→suj.
Su[u] ∩ Su[v] = ∅, where u, v:1→suj, and u ̸= v

If each service is represented by 1 port, Su will contain 217 elements, which is the
maximum size of Su in this restricted case.

The service Su[m] can be delivered by different hosts.
Let HdSu[m] represent the list of hosts that offer service Su[m].


HdSu[m] ⊂ Hmax and HdSu[m][x] contains a single host.
HdSu[m] contains unique and disjoint elements.
∃!HdSu[m][x] in HdSu[m]for x:1→hdm
HdSu[m][u] ∩ HdSu[m][v] = ∅, where u, v:1→hdmj, and u ̸= v

Combining hosts and services (HdSu[m][x],Su[m]) where x:1→hdmj results in a list
of tuples that are disjoint. This holds for all m:1→suj. At this point, all services and
hosts delivering the services form disjoint tuples and may thus be used as a basis for
creating an order-independent firewall rule base. CsHdSu[m][x] is the list of clients that
have access to service Su[m], defined on host HdSu[m][x].
By using:

• Su[m] where m:1→suj, with suj=number of disjoint services offered on the
network, for defining R.Port

4.2. The Green-Field Artifact 41

• HdSu[m][x], x:→hdmj, with hdmj=number of hosts offering Su[m], for defining
R.Destination

• CsHdSu[m][x] being the list of clients requiring access to service Su[m] on host
HdSu[m][x], of length = cjs, for defining R.Source

• “Allow”, for R.action

Disjoint rules will be created, which are usable for an evolvable firewall rule base.

Example:
Suppose we have two network services: a DB and a WEB service. The DB service is
on TCP-1200 and the WEB service is on TCP-8080. We have three hosts - H1,H2, and
H3. H1 and H2 offer the DB service. H2 and H3 offer the WEB service. We have five
clients, C1 to C5.

Su = [DB, WEB]
Hd = [HdSu[DB], HdSu[WEB]]
– HdSu[DB] = [H1, H2]
– HdSu[WEB] = [H1, H3]
Cs = [CsHdSu[DB][H1],CsHdSu[DB][H2], CsHdSu[WEB][H1], CsHdSu[DB][H3]]
– CsHdSu[DB][H1] = [C1, C2, C3]
– CsHdSu[DB][H2] = [C2, C3]
– CsHdSu[WEB][H1] = [C1, C2, C3, C4, C5]
– CsHdSu[DB][H3] = [C4]

A rule to allow access to service DB on H1 is to be created with the following com-
ponents:
Su[DB] – a Service that is disjoint with respect to all other existing Services
HdSu[DB][H1] = [H1] – a host that is disjoint with respect to all other Hosts offering
the same hervice
CsHdSu[DB][H1] – a group dedicated to the host/service combination.

4.2 The Green-Field Artifact

Information presented in the previous section needs to be translated into a solution
that is usable in a real-world firewall. As discussed in Section 1.1.3, firewalls work
with groups. Groups can be used to represent the concepts discussed in the previous
sections.

According to requirement R4, it is preferential to implement a white-list approach,
containing rules that explicitly allow traffic as well as explicitly deny traffic that does
not have a matching rule. In combination with requirement R1 (only disjoint rules),
this means that we require a rule base containing only disjoint explicit Allow rules
and one default Deny rule. The default Deny rule is not disjoint with the explicit
Allow rules and must be assigned to a location where it may not interact with the
explicit Allow rules, i.e. at the end of the rule base. We can add new disjoint rules
wherever we require, except for after the default Deny rule. The default Deny rule
goes first in and last out, and all explicit Allow rules precede the default Deny. The
default Deny rule is always evaluated as the final rule.

42 Chapter 4. Green-Field Artifact Creation and Demonstration

1. When starting from an empty firewall rule base F, the first rule to be added
shall be the default Deny rule F[1]= Rdefault_deny with

Rdefault_deny.Source = ANY,
Rdefault_deny.Destination=ANY,
Rdefault_deny.Port= ANY,
Rdefault_deny.Action = “Deny”.

2. For each Service offered on the network, create a group. All Service groups
must be entirely disjoint from one another: the intersection between groups
must be empty.
Naming convention to follow:

• S_service.name,

• with service.name as the name of the Service.

3. For each Host offering the Service defined in the previous step, a group must
be created containing only one item (being the Host offering that specific Ser-
vice).
Naming convention to follow:

• H_host.name_S_service.name,

• with host.name as the name of the Host offering the Service

4. For each Host offering the Service from the first step, a Client group must be
created. That group will contain all Clients requiring access to the specific
Service on the Specific host.
Naming convention to follow:

• C_H_host.name_S_service.name

5. For each (S_service.name, H_host.name_S_service.name) combination, create a
rule R with: 

R.Source =C_H_host.name_S_service.name
R.Destination = H_host.name_S_service.name
R.Port= S_service.name
R.Action = “Allow”

Add those rules to the firewall rule base F above the default deny rule.
The default rule Rdefault should always be at the end of the rule base.

Example:
Let’s revisit the previous example. The different objects the artifact generates are:
S_DB – containing TCP-1200
S_WEB – containing TCP-8080
H_H1_S_DB – containing H1
H_H3_S_DB – containing H3
H_H1_S_WEB – containing H1
H_H2_S_WEB – containing H2
C_H_H1_S_DB – containing C1, C2, C3
C_H_H3_S_DB – containing C2, C3
C_H_H1_S_WEB – containing C1, C2, C3, C4, C5

4.3. Green-Field Artifact Demonstration 43

C_H_H2_S_WEB – containing C1

All rules regarding the DB services are created with Service objects that are disjoint
from each other and Destination objects that are disjoint from each other, both in
name and content. They will always result in disjoint rules. This is also the case for
WEB services.

Through the use of the artifact’s design principles, group objects are created that
form the building blocks for an evolvable rule base. Each building block addresses
one concern.

If each Service of Su is comprised of only one Port, then the Su will contain the
maximum number of elements, being217 elements, resulting in maximum 217 Ser-
vice groups S_service.name being created. For each Host, maximum 217 Services can
be defined and expressed in H_host.name_S_service.name destination groups. The ar-
tifact stipulates that one rule per Host and per Service must be created. This reduces
the rule base solution space from

2.

(
cj

∑
a=1

(
cj
a

))
.

(
hj

∑
a=1

(
hj
a

))
.

(
217

∑
k=1

(
217

k

))
(4.1)

where cj = fc(N) and hj = fh(N)
to:

f j = hdj.suj + 1 = hdj.217 + 1 (4.2)

with hdj = number of Hosts connected to the network.
hdj = fh(N). The “+1” is the default Deny rule Rdefault_deny.

4.3 Green-Field Artifact Demonstration

In this section we will demonstrate the artifact via validation by instantiation. We
will apply different generic changes on a generic rule base (add/remove rule) and
on the components that make up a rule (add/remove a Service, add/remove a Host,
add/remove a Client). We will also show the result of rule aggregation.

4.3.1 Add and Remove a Rule

Creating rules according to the artifact’s design principles leads to rules that are
disjoint from one another. Disjoint rules can be added and removed from the firewall
rule base without introducing CEs.

4.3.2 Adding a New Service to the Network

A new Service is a Service that is currently not defined in Su. The new Service results
in a new definition of a Service being added to Su. The artifact prescribes that a new
group S_service.name must be created for the new Service. The group will contain the
ports required for the Service. For each new Host offering the Service, the artifact
prescribes to create a new group Destination H_host.name_S_service.name, and an
associated Source group C_H_host.name_S_service.name. The Destination groups are
populated with only one Host (the Host offering the Service). The Source groups
are populated with all Clients requiring access to the Service of one specific Host.

44 Chapter 4. Green-Field Artifact Creation and Demonstration



All building blocks to create the disjoint Rules are now available. For each Host
offering the new Service, a Rule must be created using the created groups. No CEs
are introduced during these operations. Adding new Rules to the rule base does not
introduce CEs (see Section 4.3.1).

4.3.3 Adding a New Host Offering Existing Services, to the Network

A new Host is a Host that is currently not defined in Hd. The new Host results in a
new Host definition being added to Hd. The artifact prescribes that a new group
H_host.name_S_service.name must be created for each Service delivered by the Host
and a corresponding Source group C_H_host ṅame_S_service.name must be created as
well. The Destination groups are populated by their corresponding Hosts. The
Source groups are populated with all Clients requiring access to the Service on that
Host. All building blocks to create the disjoint Rules are now available. For each
Service offered by the new Host, a Rule must be created using the created groups.
No CEs are being introduced during these operations. Adding the new Rules to the
rule base does not introduce CEs (see Section 4.3.1).

4.3.4 Adding a New Host Offering New Services, to the Network

Sections 4.3.3 and 4.3.2 are in combination what is required to complete this type
of change. The artifact prescribes that new Service groups must be created for new
Services. An equal number of Destination groups must be created and each be pop-
ulated by the new Host. The same number of Source groups must be created and
populated by the Clients requiring access to one of the new Services on the new host.
All building blocks to create the disjoint rules are now available. For each combina-
tion (new Host, new Service), a Rule must be created using the created groups. No
CEs are being introduced during these operations. Adding the new Rules to the rule
base does not introduce CEs (see Section 4.3.1).

4.3.5 Adding a New Client to the Network

Adding a new Client to the network requires neither the creation of new rule build-
ing blocks nor the addition of new Rules. The new Client only needs to be added
to those Source groups that provide access to the required Services/Hosts combina-
tions. No CEs are being introduced during these operations.

4.3.6 Removing a Service From the Network

Let sr be the Service that needs to be removed from the network. The name of the
Service is sr.name=sremove. The Service is part of Su. The group corresponding
with sr is S_sremove. The Hosts offering the Service correspond with the groups
H_host.name_S_sremove. The Clients consuming the Service are defined in
C_H_host.name_S_sremove. All building blocks to identify the Rules that require
removal from the rule base are now available. For each Host offering sr, the corre-
sponding rule

R.Source = C_H_host.name_S_sremove
R.Destination=H_host.name_S_sremove
R.Port= S_sremove
R.Action = “Allow”

4.3. Green-Field Artifact Demonstration 45



must be removed from the rule base. No CEs are being introduced during these
operations. Removing Rules from the rule base does not introduce CEs (see Sec-
tion 4.3.1). The Service sr needs to be removed from Su as well as from the corre-
sponding group S_remove in the firewall.

4.3.7 Removing a Host From the Network

Let hr be the Host that needs to be removed from the network. The name of the
Host is hr.name=hremove. The Host is part of Hd. There will be as many Des-
tination groups for hr as there are Services offered by hr. They are defined by
H_hremove_S_service_name. The same holds for the Source groups, defined by
C_H_hremove_S_service.name. All building blocks to identify the Rules that require
removal from the rule base are available. For each Service offered by hr, the corre-
sponding Rule

R.Source = C_H_hremove_S_service.name
R.Destination=H_hremove_S_service_name
R.Port= S_service.name
R.Action = “Allow”

must be removed from the rule base. No CEs are being introduced during these
operations. Removing Rules from the rule base does not introduce CEs (see Sec-
tion 4.3.1). The Host hr needs to be removed from Hd as must the corresponding
groups H_remove_S_service.name in the firewall.

4.3.8 Removing a Service From a Host

Let sr be the Services with sr.name=sremove, which need removal from Host hr with
hr.name = hremove. The Service is part of Su. The group corresponding with sr is
S_sremove. The Destination group for Service sr on Host hr, is H_hremove_S_sremove.
The corresponding Source group is C_H_hremove_S_sremove. All building blocks to
identify the Rule 

R.Source = C_H_hremove_S_sremove
R.Destination=H_hremove_S_sremove
R.Port= S_sremove
R.Action = “Allow”

requiring removal from the rule base are available. No CEs are being introduced
during these operations. Removing Rules from the rule base does not introduce CEs
(see Section 4.3.1). The Service sr does not need to be removed from Su, nor does the
corresponding group as the Service continues to be offered on other Hosts.

4.3.9 Removing a Client From the Network

Let cr be a Client that needs to be removed from the network. The Client is part
of Cs. Removing a Client from the network does not require removing Rules from
the rule base. The Client needs to be removed from the different Source groups that
provide the Client access to specific Services on specific Hosts. If the Services and
Hosts to which the Client has access are known, then the Source group from which
the Client needs to be removed are also known. If the Services and/or Hosts are not

46 Chapter 4. Green-Field Artifact Creation and Demonstration

known, then an investigation of all the Source groups is required to see if the Client
is part of the group or not. If part of the group, the Client needs to be removed. The
Client also needs to be removed from Cs. Determining whether or not a Client is a
member of a Source group can be considered as a CE as all Source groups require
inspection.

4.3.10 Summary of the Demonstration

Table 4.1 provides a summary of the green-field artifact demonstration.

Type of Change Impact of the Change
ADD a Rule no CE
ADD a new Service no CE
ADD a new Host with an existing Service no CE
ADD a new Host with a new Service no CE
ADD a new Client no CE
REMOVE a Rule no CE
REMOVE a Service no CE
REMOVE a Host no CE
REMOVE a Service from a Host no CE
REMOVE a Client CE at Client level

TABLE 4.1: Summary green-field artifact demonstration

4.4 The Impact of Aggregations

The artifact results in a fine-grained rule base, i.e. one that contains many rules. The
urge to aggregate and consolidate rules into fewer and less granular rules will be
a natural inclination of firewall administrators since many of them would (wrong-
fully) deem that the smaller rule base, the less complicated it is. However, any form
of aggregation will result in information loss. Specifically because the artifact con-
sciously enforces fine-grained information in the group naming and usages, there-
fore disjoint rules can be created and the ZT model can be enforced. If, due to ag-
gregations, it can no longer be guaranteed that rules are disjoint, then neither can a
CE-free rule base continue to be guaranteed. Aggregation will also lead to violations
of the ZT model.
In the following subsections, we provide two examples of the impact of aggrega-
tions.

4.4.1 Aggregation at Host Level

All hosts offering the same service are aggregated into one Destination group. Such
an aggregation excludes the possibility of specifying that a client needs access to a
specific service on a particular Host. A client will have access to the service on all
hosts offering the Service, whether desired or not. In such a configuration, ZT can
no longer be guaranteed. As long as the Service groups are unique, disjoint rule
can still be made and the rule base will remain evolvable. The moment that ZT and
non-ZT rules are combined, CEs start creeping into the creation process of new rules.

Example

4.4. The Impact of Aggregations 47

Assume the following setup; five hosts, H1 to H5, all offer service S1. If we apply the
green-field artifact and aggregation at host level, we require the creation of a Desti-
nation group containing the five hosts. The name of the Destination group would
be H_*_S_S1. The "*" represent the aggregation of the hosts. The group C_H_*_S_S1
contains all clients requiring access to S1 on all hosts.
Assume now that there is a new client that requires access to S1 but only on H1. We
cannot use the existing groups to create the required rule as they give access to all
hosts that offer S1. We need to create a new Destination group H_H1_S_S1 and a
new Client group C_H_H1_S_S1. Together with S_S1, the required rule can be cre-
ated.
Assume now that there is an existing client that requires access to S1 on a new
host H6 and that H6 cannot be part of existing aggregations. We require groups
H_H6_S_S1 and C_H_H6_S_S1 to be able to create such a rule.
The group H_*_S_S1 no longer represents its original intent as it no longer contains
all hosts offering S1. This eliminates he anthropomorphic relation we want to en-
force with the green-field artifact and which is required for an evolvable rule base. It
becomes necessary to investigate the content of all aggregation Destination groups
to understand their intent. This opens the door for the introduction of CEs, as adding
clients and hosts to the network can no longer be expanded as foreseen in the green-
field artifact, but requires analysis of the content of the Destination group(s). The
green-field artifact anticipated all possible changes in a rule base. The introduction
of aggregation in combination with more fine-grained filtering no longer makes it
possible to anticipate all changes, as the changes can no longer be generalized. The
combination of aggregation and ZT makes changes content- and context-specific,
resulting in the introduction of CEs at run-time.

4.4.2 Aggregation at Service Level

All services offered on a host are aggregated into one Service group. The aggrega-
tion method excludes specifying that a client needs access to some of the services
on the host. A client will have access to all services defined on the host, whether
desired or not. In such a configuration, ZT can no longer be guaranteed. As long as
the Destination groups are disjoint, disjoint Rules can still be created. The moment
that ZT and non-ZT rules are combined, a non-disjoint Rule will emerge. The rule
base can no longer be guaranteed CE-free.

Example
Assume the following setup; there are five services, S1 to S5, that are delivered by
three hosts, H1 to H3. The services are aggregated in a service group S_S*, where
"*" represents the aggregation of services. The Destination groups are H_H1_S_S*,
H_H2_S_S* and H_H3_S_S* and the Source groups are C_H_H1_S_S*, C_H_H2_S_S*
and C_H_H3_S_S*. As there is disjointness at the destination, a disjoint rule can be
made.
Assume now that a client is only allowed access to S1 on H1. We need to create a
new Service group S_S1 and Source group C_H_H1_S_S1. This Service group is no
longer disjoint with S_S*.
Assume, for example, that a new service S6 is introduced at H3. We need to create
a new Service Group S_6 and Source group C_H_H3_S_S6. The aggregated Service
group S_S* no longer reflects its original intent as it does not contain S6. If it were it
to contain S6, the filtering intent could not be correctly implemented.

48 Chapter 4. Green-Field Artifact Creation and Demonstration

We run into similar problems as those discussed previously for host level aggrega-
tions. Either we introduce non-disjoint groups, allowing the creation of non-disjoint
rules, or the aggregations no longer represent their intent, breaking the anthropo-
morphic relation and potentially introducing CEs when rules are being created.

49

Chapter 5

Brown-Field Artifact Creation and
Demonstration

In this chapter, we design an artifact — an algorithm this time — that will convert
an existing rule base into an evolvable rule base. The algorithm is based on the Iter-
ated Local Search (ILS) meta-heuristic, which is a classic way to solve an optimiza-
tion problem. The optimization we are addressing is: maximize evolvability while
minimizing the number of rules. Section 5.1 discusses the design of the algorithm,
while Section 5.2 demonstrates the algorithm with firewall exports from Engie. We
conclude with our findings in Section 5.3. The findings of this chapter have been
published in [46] and [47].

5.1 Brown-Field Artifact Design

In this section we will discuss the different components that comprise the algorithm.
We begin by rationalizing the choice for Iterated Local Search (ILS) as meta-heuristic
[48] [49] [50]. We will discuss the nature of the initial solution, the set of feasible solu-
tions, and the objective function associated with a solution. We continue by defining
the move type, move strategy, perturbation and stop condition of the Iterated Local
Search. The final part of this section begins with a discussion of the solution en-
coding and special operations performed in the algorithm, and concludes with the
presentation of the algorithm.

5.1.1 Meta-Heuristic Selection

The objective is to disentangle/reshuffle the service definitions into a set of new
service definitions that are disjoint but maximally large. The simplest solution is
to create one service definition per port. However, some ports belong together to
deliver a service. This filtering logic is embedded in the rule base and service defini-
tions. It must be preserved.

Service definitions containing ports that appear in multiple service definitions must
be split into non-overlapping service definitions. The result should be that the de-
gree of overlap (or disjointness) of all service definitions decreases as more service
definitions are split. Let us say that a user measures the degree of disjointness of the
entirety of the service definitions (pre-change and post-change) and then observes a
post-change improvement in the degree of disjointness. It would be correct to con-
clude that the change represents an improvement to the previous version.

A Local Search (LS) heuristic is a suitable method for organizing such gradual im-
provement processes. To avoid getting stuck in a local optimum (see further), the

50 Chapter 5. Brown-Field Artifact Creation and Demonstration

Local Search will be upgraded to an Iterated Local Search. The Iteration component
should result in avoiding becoming stuck in a local optimum where we can no longer
perform splits and improve the disjointness. The Iteration component should per-
form a special kind of split called a "perturbation" that will allow the continuation
of the search for improvement.

5.1.2 Initial Solution and Neighborhood

The initial solution is the rule base containing all of the service definitions. It is the
rule base with all the service definitions. The set of all service definitions is our
neighborhood. We will have to pick a service definition, confirm whether or not it
is disjoint and, if not, split it and see how this affects the solution - that is whether
or not disjointness has improved. The solution space (SP) for the service definitions
consists of all possible combinations of ports. If the number of distinct ports in the
service groups equals P, then the SP is:

SP =
P

∑
k=1

(
P
k

)
(5.1)

P can be max 217. We are looking to find a new solution that is part of the solu-
tion space, in which all service definitions are disjoint yet grouped within groups of
maximum size.

5.1.3 Objective Function

To know whether or not the splitting of a service definition results in improving the
solution, we need a mechanism to express the degree of disjointness of a service def-
inition and of the total rule base.

Let p represent a service port.

Let S be a set of ports, representing a service definition.
S = { p1...pnS}
where| S | = nS = number of ports in the service definition.

Let σ be the set of all service definitions Si used in the firewall rule base.
σ = {S1...Snσ}
where| σ | = nσ= number of service definitions

Let PF(px)σ be the port frequency of port px in σ, as the number of times px is used
in services of σ.

PF(px)σ =
nσ

∑
i=1

| Si ∩ px | (5.2)

We define the Disjointness Index DI(Sx)σ, of a service definition Sx, in σ as the sum
of the port frequencies PF(px)σ of the ports px of Sx, divided by the number of ports
in Sx.

DI(Sx)σ =
∑nx

i=1 PF(px)σ

nx
(5.3)

where nx = | Sx |= number of ports in Sx.

5.1. Brown-Field Artifact Design 51

A disjoint service is a service whereby each port p appears in only one service defi-
nition. The DI of a disjoint service will have a value of 1 and a value greater then 1
if the service is not disjoint.

We define the Objective Function OFσ, in σ, as the sum of all DI(Sx)σ and of all
service definitions in σ.

OFσ =
nσ

∑
i=1

DI(Si)σ (5.4)

with nσ the number of service definitions in the solution.

We define an Optimal Solution as a solution where OFσ equals the number of service
definitions, as this means that all DI of all service definitions are equal to 1.

OFσ =| σ | (5.5)

An Optimal Solution is not necessarily a Global Optimum as making service defi-
nitions of one port would also yield an objective function value that is equal to the
total number of service definitions.

5.1.4 Feasible Solutions

Whatever kind of splits we will be performing, the original filtering logic of the rule
base must be maintained. When a service is split, all rules that contain this service
must be modified. The original service must be replaced by the result of the split.
As we want a rule to contain only one service definition, it may be required to split
the rules containing the split result.
Example: R1 contains service Sx. Sx is split into Sx1 and Sx2. To reflect this, we re-
place Sx with Sx1 and Sx2 in rule R1.However, a rule must only contain one service.
R1 needs to be split into R1.1 and R1.2, where R1.1 is a copy of R1 but with Sx being
replaced by Sx1, and R1.2 is a copy of R1 but with Sx being replaced by Sx2. Both
rules are put in consecutive locations in the rule base.

5.1.5 Move Type

Before we decide on the move type, we must first investigate the impact that splitting
of service definitions has on the objective function. Based on this analysis, a selection
of type of split (move type) will be made.

The Impact of Splitting Service Definitions on the OF

A service definition can:

• be a subset of existing service definitions.

• be the superset of existing service definitions.

• be partially overlapped with other service definitions.

• be a combination of the above.

52 Chapter 5. Brown-Field Artifact Creation and Demonstration

FIGURE 5.1: Split example

Let Sca be the candidate service we will split.{
Sca = {p1...pnca}
nca = | Sca | = number of ports in the Sca

Let Sco be an arbitrary set of ports that are part of Sca, making up the new service
Sco, that is to be extracted from Sca.

Sco = {pj...pj+nco}
nco = | Sco | = number of ports in the Sco.
Sca∩Sco = {pj...pj+nco}
|Sca∩Sco|=nco

Let S’ca be the new service comprised of ports that are part of Sca but not of Sco. S’ca
is what is left of Sca, after splitting-up or carving-out Sco{

S’ca = Sca\Sco = {p1...pj-1, pj+nco+1,...pnca}
| S’ca | = nca - nco

Let σSca be the set of services that contains ports that are also part of service Sca.

σSca = {SV1...SVn}
∀SVx x=1→n |
* |Sca∩SVx|̸= ∅
* | SVx | = Vnx
* |Sca∩SVx | = qx = the amount of port overlap between Sca and SVx

See Figure 5.1 for a visual representation of these definitions.

5.1. Brown-Field Artifact Design 53

When the split or carve-out of Sco from Sca is performed, the port frequencies, the
DI and the OF change, depending on the effect of the split. We shall now investigate
under which conditions the split will improve the objective function.

Let σB be the set of services before the split and σA be the set of services after the
split. We want to know which conditions will improve the Objective Function, or

∆OF = OFσB − OFσA > 0
∆OF > 0 means OF improved (=lowered).
∆OF < 0 means OF deteriorated (=increased).

Sco is a random subgroup of Sca, meaning not necessarily part of σB. Subsequent to
a split Sca becomes S’ca. Both S’ca and Sco are part of σA.

There are three possible cases:

• S’ca and Sco also exist in σB. The split results in two existing services. We
merge them into the existing services — the split results in a reduction of the
total number of services with 1.
| σA | - | σB | = -1

• S’ca or Sco exists in σB. The split results in a new service and an existing service.
The existing service merges and the split results in an equal number of services.
| σA | - | σB | = 0

• S’ca and Sco do not exist in σB. The split results in two new services and the
split results in an increase of the total number of services with 1.
| σA | - | σB | = +1

We shall now investigate what kind of change in Objective Function value we can
expect, based on the three following cases.

Case 1: | σB | - | σA | = -1
S’ca and Sco are elements of σA and σB.
Sca only exists in σB.
Sca = {p1...pnca}
As Sca is not part of σA, the port frequencies of all ports of Sca decreased by 1 in σA.

(5.6) ∀p ∈ Sca | (PF(p)σA = PF(p)σB − 1

See Figure 5.2 for a graphical representation.

As the port frequencies of all ports that are part of Sca decrease, the DI of all groups
that contain one or more port of Sca are also impacted. These are all SVi service
groups.

When calculating ∆OF, only the impacted service groups must be taken into account.

∆OF = OFσB −OFσA = [DI(Sca)σB +DI(S’ca)σB +DI(Sco)σB +∑n
i=1 DI(SVi)σB] − [DI(S’ca)σA +

DI(Sco)σA + ∑n
i=1 DI(SVi)σA]

∆OF = DI(Sca)σB +[DI(S’ca)σB − DI(S’ca)σA] + [DI(Sco)σB −DI(Sco)σA] + [∑n
i=1 DI(SVi)σB −

54 Chapter 5. Brown-Field Artifact Creation and Demonstration

FIGURE 5.2: Split case 1

∑n
i=1 DI(SVi)σA]

Taking (5.3) and (5.6) into account:

(a) DI(S’ca)σA =
∑nca−nco

i=1 PF(pi)σA
nca−nco =

∑nca−nco
i=1 PF(pi)σB−(nca−nco)

nca−nco = DI(S’ca)σB − 1

=⇒ DI(S’ca)σB − DI(S’ca)σA = 1

(b) DI(Sco)σA =
∑nco

i=1 PF(pi)σA
nco =

∑nco
i=1 PF(pi)σB−(nco)

nco = DI(Sco)σB − 1

=⇒ DI(Sco)σB − DI(Sco)σA = 1

(c) ∑n
i=1 DI(SVi)σB − ∑n

i=1 DI(SVi)σA = ∑n
i=1

∑nvi
j=1 PF(pj)σB

nvi − ∑n
i=1

∑nvi
j=1 PF(pj)σA

nvi

= ∑n
i=1

∑nvi
j=1 PF(pj)σB

nvi − ∑n
i=1

∑nvi
j=1 PF(pj)σB−qvi

nvi = ∑n
i=1

qvi
nvi

Putting (a), (b) and (c) into ∆OF gives:

∆OF = DI(Sca)σB + 2 + ∑n
i=1

qvi
nvi

Conclusion: If | σB | - | σA | = -1, then ∆OF is always > 0 (all terms are posi-
tive), and the Objective Function always improves.

Case 2: | σB | - | σA | = 0

5.1. Brown-Field Artifact Design 55

FIGURE 5.3: Split case 2

S’ca or Sco are part of σA or σB (exclusive OR).
Assume Sco already exists in σB (carve-out of an existing group)
Sca does not exist in σA, but S’ca does exist in σA. The port frequencies of all ports of
S’ca do not change.

∀p ∈ Sca \ Sco | PF(p)σA = PF(p)σB (5.7)

Sco already exists in σB. The group cancels out in σB and the port frequencies of all
ports in Sco decrease.

(5.8) ∀p ∈ Sco | PF(p)σA = PF(p)σB − 1

See Figure 5.3 for a graphical representation.

As the port frequencies decrease, the DI of all groups that contain one or more port
of Sco are also impacted. These are all SVi service groups.

When calculating ∆OF, only impacted service groups must be taken into account.

∆OF= [DI(Sca)σB +DI(Sco)σB +∑n
i=1 DI(SVi)σB] − [DI(Sca)σA +DI(Sco)σA +∑n

i=1 DI(SVi)σA]

∆OF = [DI(Sca)σB − DI(S’ca)σA] + [DI(Sco)σB − DI(Sco)σA] + [∑n
i=1 DI(SVi)σB −

∑n
i=1 DI(SVi)σA]

Taking (5.3) and (5,8) into account and using the same type of calculations as in
Case 1:

56 Chapter 5. Brown-Field Artifact Creation and Demonstration

(d) DI(Sca)σB − DI(S’ca)σA = DI(Sca)σB − DI(S’ca)σB

(e) DI(Sco)σB − DI(Sco)σA = 1

(f) DI(S’ca)σA + DI(Sco)σA + ∑n
i=1 DI(SVi)σA = ∑n

i=1
qvi
nvi (see case 1)

Putting (d), (e) and (f) into ∆OF

∆OF = DI(Sca)σB − DI(S’ca)σB + 1 + ∑n
i=1

qvi
nvi > 0

The same result is obtained when the assumption is made that S’ca already exits
in σB

Conclusion: If | σB | - | σA | = 0, then ∆OF (due to −DI(S’ca)σB) can be < 0, and
the Objective Function can thus deteriorate.

Case 3: | σB | - | σA | = 1
Sca splits into 2 mutually-exclusive new services (S’ca and Sco). Neither S’ca nor Sco
are part of σB.
S’ca and Sco are both part of σA.
The port frequencies PF of any p do not change. No other services are impacted.

∀p ∈ Sca | PF(p)σA = PF(p)σB (5.9)

The only factors playing a role in the calculation of ∆OF are DI(Sca)σB , DI(S’ca)σA ,
and DI(Sco)σA

∆OF= DI(Sca)σB − DI(S’ca)σA − DI(Sco)σA

∆OF= DI(Sca)σB − DI(S’ca)σB − DI(Sco)σB

Conclusion: If | σB | - | σA | = 1, then ∆OF can be < 0 (due to −DI(S’ca)σB − DI(Sco)σB),
and the Objective Function can thus deteriorate).

See Figure 5.1 for a visual representation of this case.

Only case 1, | σB | - | σA | = -1, provides full certainty of how OF will evolve. To
gain more certainly, we shall also investigate the relationship between the DI of ser-
vice Sca and the DIs of sub services S’ca and Sco.

Relationship between DIs

(1) DI(Sca)σ = ∑nca
i=1 PF(pi)σ

nca =
∑1

i=1 PF(pi)σ+∑
j+nco
i=j+1 PF(pi)σ+∑nca

i=j+nco+1 PF(pi)σ

nca

nca.DI(Sca)σ − ∑
j+nco
i=j+1 PF(pi)σ = ∑

j
i=1 PF(pi)σ + ∑nca

i=j+nco+1 PF(pi)σ

(2) DI(S’ca)σ =
∑nca

i=1 PF(pi)σ+∑nca
i=j+nco+1 PF(pi)σ

nca−nco

(3) nco.DI(Sco)σ = ∑
j+nco
i=j+1 PF(pi)σ

5.1. Brown-Field Artifact Design 57

FIGURE 5.4: Linear interpolation

Putting (1), (2) and (3) together gives:

DI(S’ca)σ =
nca.DI(Sca)−∑

j+nco
i=j+1 PF(pi)σ

nca−nco

DI(S’ca)σ = nca
nca−nco .DI(Sca)σ − nco

nca−nco .DI(Sco)σ

nca
nca−nco .DI(Sca)σ = DI(S’ca)σ +

nco
nca−nco .DI(Sco)σ

DI(Sca)σ = nca−nco
nca .DI(S’ca)σ +

nco
nca .DI(Sco)σ

Let α = nco
nca be the split-factor, where 0 ≤ α ≤ 1

Then
DI(Sca)σ = (1 − α).DI(S’ca)σ + α.DI(Sco)σ (5.10)

This formula expresses DI(Sca)σ as the linear interpolation between DI(S’ca)σ and
DI(Sco)σ, with α as the interpolation factor. See Figure 5.4 for a visualization of this
linear interpolation function.

Two cases are possible:

• Case a: DI(S’ca)σ > DI(Sco)σ

• Case b: DI(Sco)σ > DI(Sca)σ

Based on the relationship between DIs, we may conclude that:

If | σB | - | σA | = 1
then ∆OF= DI(Sca)σB − DI(S’ca)σB − DI(Sco)σB < 0
as according to (5.10) either DI(S’ca)σB or DI(Sco)σB is > DI(Sca)σB .
The Objective Function thus deteriorates when | σB | - | σA | = 1.

If | σB | - | σA | = 0
then ∆OF = DI(Sca)σB − DI(S’ca)σB + 1 + ∑n

i=1
qvi
nvi can be < 0

if ∆OF < 0 then DI(Sca)σB < DI(S’ca)σB must be < 0

58 Chapter 5. Brown-Field Artifact Creation and Demonstration

Taking (5.10) into account, we can rewrite ∆OF as:

(1 − α).DI(S’ca) + α.DI(Sco)− DI(S’ca) + 1 + ∑n
i=1

qvi
nvi

−α.(DI(S’ca)− DI(Sco) + 1 + ∑n
i=1

qvi
nvi > 0

=⇒ ∆OF > 0 if α <
1+∑n

i=1
qvi
nvi

DI(S’ca)−DI(Sco)

Thus, a smaller α gives a higher probability of an OF improvement.

Split Selection

From the preceding, we conclude that carving-out subgroups has a high likelihood
to result in an improvement of the Objective Function. We will even go a step further
and define our move type as the carving-out of all subgroups of a service definition.
We call our split operator the full-carve-out move. Example: A service definition
S={1,2,3,4,5,6,7}. There also exists service definitions S1={1,2} and S2={5,7}. Carving
out S1 and S2 from S gives, S1= {1,2}, S2={5,7} and S’={3,4,6}

This move type, however, is unable to handle partial overlapping service defini-
tions. It is expected, therefore, that when all carve-outs are done, there will be a
number of overlaps remaining that require a different type of operation.

5.1.6 Move Strategy

All services with a DI greater than one are candidates for splitting. It seems logical
to begin by splitting the service with the largest DI. If that service cannot be split
(no subgroups), then the second-largest DI is taken, etc. If a group can be split,
the impact of the split is calculated. When OF improves (=descends), the move is
accepted and executed. If not, the next service in the sorted service DI list is chosen.
The move-strategy is a variant of the First Improvement strategy of the ILS meta-
heuristic; a variant as we first order the service DI list and take the top element from
the list.

5.1.7 Perturbation

The carve-out of subgroups cannot remove all forms for non-disjointness. Corre-
lated (partially overlapping) service definitions cannot be split this way. This creates
a requirement for a new split operator when no additional carve-outs are possible.
The operator will determine if a service definition overlaps with another service def-
inition. If it does, the intersection is split-off. By splitting off this intersection, a new
services definition will be created. Splitting off an intersection will result in | σB | -
| σA | = 1. In the previous section we observed that the Objective Function will de-
teriorate. This is a transitory situation, due to the fact that the newly-formed service
definitions may be subgroups of the existing service definitions. We consciously al-
low the OF temporary deterioration so that a better optimum may be found in the
next Local Search iteration. We consider this kind of split as the perturbation.

5.1.8 Stop Conditions

Once all possible carve-outs and perturbations are complete, then there are no more
inclusively matching and correlated rules. All port frequencies are equal to one, all

5.1. Brown-Field Artifact Design 59

service group DI’s are equal to one, and OF will equal the number of service defini-
tions. The solution cannot be additionally improved.

Figure 5.5 shows how we expect the Objective Function to evolve over time, via
consecutive local searches (doing full-carve-out moves) and perturbations (doing
intersection-carve-out-moves), until the end condition is reached (i.e., full services
are disjoint).

FIGURE 5.5: Expected evolution of the Objective Function

5.1.9 Solution Encoding

The algorithm has been implemented in JAVA. The different components of the so-
lution are implemented as JAVA classes. We attempted to stay as true as possible
to NS principles by defining data classes, which only contain data and convenience
methods to get and set the data, and task classes used to perform actions and calcu-
lations on the data objects.

Port

Services contain ports. A port is linked to a protocol (TCP or UDP). PortRange is the
class representing a range of ports with an associated protocol.

public class PortRange
{
private String protocol;
private int begin;
private int end;
}

For a single port, begin = end.

60 Chapter 5. Brown-Field Artifact Creation and Demonstration

Port Frequency

Within a solution, each port will have a frequency that is equal to the number of ser-
vice definitions in which this port appears. PortFrequency is the class representing
the port frequency and the service definitions containing that port.

public class PortFrequency
{
private int portnumber;
private int frequency;
private ArrayList<String> group_occurancelist;
}

Port Frequencies List

The PortFrequencies class is the list of all ports existing in a solution, and for each
port you identify and store its port frequency value in the solution. The ith element
of the array represents port i.The ith element contains the port frequency information
of port i. As there are TCP and UDP ports, two arrays are required for a full port
frequency list.

public class PortFrequencies
{
private PortFrequency TCP_portfrequency[]=

new PortFrequency[65536];
private PortFrequency UDP_portfrequency[] =

new PortFrequency[65536];
}

Service

The Service class represent a service definition and contains all port ranges, UDP
and TCP, associated with the service.

public class Service
{
private String name;
private ArrayList<PortRange> udp_ranges;
private ArrayList<PortRange> tcp_ranges;
}

ServiceList

The ServiceList class is the list of all service definitions of a solution.

public class ServiceList
{
private String name;
private ArrayList<Service> servicelistitems;
}

Service_DI

For each service definition, the disjointness index must be calculated and stored. The
disjointness index is stored in the Service_DI class.

5.1. Brown-Field Artifact Design 61

public class Service_DI
{
private Service service;
private double disjointness_index;
}

ServiceDIList

The ServiceDIList class is a list of all DIs of all service definitions of a solution. This
list represents the neighborhood as this list will be used to iterate over. The service
DI list is an ordered list, with the service with the highest DI as the first element of
the list.

public class Service_DI_List
{
private ArrayList<Service_DI> service_DI_list;
}

5.1.10 Operations

The algorithm contains a number of tasks that perform actions on and with the
data classes. The most important and relevant ones are listed in the following sub-
sections.

PortFrequenciesConstructor

The PortFrequenciesConstructor will calculate the port frequencies of all ports used
in all services. It takes the current servicelist as input. The result — a PortFrequen-
ciesList — is accessible via a get-method.

Service_DI_List_Creator

The Service_DI_List_Creator will calculate the DI of all services. The inputs are the
current service list and portfrequencieslist and the result — a ServiceDIList — is
accessible via a get-method.

Service_Split_Evaluator

The Service_Split_Evaluator will perform a full-carve-out-split. The inputs are the
service to split, the current servicelist, and the current portfrequencieslist. The result
of the split, i.e. a new ServiceList, a new ServiceDIList, a new PortFrequenciesList,
and the value of the objective function, are accessible via get-methods.

Service_Perturbation

The Service_Perturbation will check if a perturbation is possible and, if so, performs
it. The inputs are the current servicelist and the portfrequencieslist. The results of
the split, being the new ServiceList, new ServiceDIList, new PortFrequenciesList,
and the value of the objective function, are accessible via get-methods.

62 Chapter 5. Brown-Field Artifact Creation and Demonstration

5.1.11 The Iterated Local Search Algorithm

Algorithm 1 (see Figure 5.6) is the ILS algorithm designed according to the
components described in previous sections.
The important variables are:

• sl = the service list.

• pfl = the portfrequencies list.

• sdil = the service DI list.

• of = objective function value of a solution.

• fully_disjoint = Boolean indicating if the solution is fully disjoint.

• end_of_neighborhood = Boolean indicating if the full neighborhood has been
searched.

• objective_function_improvement = Boolean indicating if the objective function
has improved.

• neighborhoodpointer = index of an element in the sorted neighborhood.

• service_to_split = service of the neighborhood that will be evaluated for split-
ting.

5.2 Brown-Field Artifact Demonstration

The artifact outlined in the previous section will be applied to firewall rule bases
provided by Engie. Before an export from a firewall can be used as input for the
algorithm, some pre-processing is required. We start this section by explaining these
operations. We continue by discussing the components we added to the algorithm
that allow the adjustments to the rule base and thus measure the impact of service
disjointness on the size of the rule base. The different demonstration sets will be elu-
cidated before they become subject to the algorithm. We conclude with a summary
of the algorithm’s results and a description of some in-depth behavioral characteris-
tics of the algorithm.

5.2.1 Firewall Export Pre-Processing

The pre-processing consists of a number of steps: loading the export files in data
structures, creating the Rule History List, creating the Service History List, replacing
the service groups with their members, adjusting the rule base to conform to the
design criteria that one rule should contain only one service, searching for identical
(content wise) services and adjusting the service list and rule base accordingly, and
the versioning of all services and rules. Each of these steps is elaborated in the next
subsections.

5.2. Brown-Field Artifact Demonstration 63

FIGURE 5.6: ILS-based algorithm

Step 1: Loading the Export Files

The firewall export consists of a set of CSV files. Not every element of those files is
valuable. Via manual operations, we have removed the non-relevant data in order

64 Chapter 5. Brown-Field Artifact Creation and Demonstration

to limit our focus to:

• for services: the name, protocol and ports

• for service groups: the name and service members

• for rules: the number, name, source, destination, services/service groups and
action.

The end result is a set of ";" delimited files.
The services file, service group file and rule base file are loaded into their corre-
sponding data structures and can now be pre-processed.

Step 2: Preparing the Rule History

The Rule History will track all changes made to the original rule base, such as the
replacement of service groups by their member services, the splitting of rules to
adhere to the design rule that one rule should contain only one service, and the
splitting of rules due to the splitting of a service and name changes (versioning)
throughout the algorithm’s run-time. The Rule History has a tree structure, wherein
each level in the tree represents the changes made to the previous level.

Step 3: Preparing the Service History

The Service History will track all changes made to the original services, such as the
merger of a service with another identical service (different name, but same content),
the split of a service into two or more new services (after a carve-out or perturbation),
and name changes (versioning) throughout the algorithm’s run-time. The Service
History has a tree structure, wherein each level in the tree represents the changes
made to the previous level.

Step 4: Replacing the Service Groups in the Rule Base

The Service Groups aggregate services. As discussed in Chapter 2 and 4, those are
sources of evolvability issues and, as such, we need to eliminate them. In all rules
belonging to the rule base that contain a Service Group, we replace the Service Group
by the individual members (Services) of the Service Group. Given that the rules shall
change during this operation, all changes are tracked in the Rule History.

Step 5: Applying the One-Service-Per-Rule Design Criterion

From the green-field artifact, it follows that applying SoC at the rule level means that
a rule should only contain one service. The previous step will certainly have resulted
in a violation of this principle and there may also be additional rules that combine
different services in one rule. The rule base is scanned, in search of violations of our
design criteria, and rules are split accordingly. All changes are reflected in the Rule
History.

Step 6: Looking for Identical Services

As firewalls allow the creation of identical service definitions with different names
(examples: HTTPS, TCP, 443 and https, TCP, 443), we must scan through all the ser-
vices to locate and consolidate identical services in unique service definition. Fail-
ure to do this would violate SoC on the basis that the same concern is addressed by

5.2. Brown-Field Artifact Demonstration 65

different objects, thus hampering evolvability. As services get consolidated, rules
containing those services must be adjusted. Both Service History and Rule History
are updated.

Step 7: Initial Versioning of the Services

During the algorithm phase, services will be split. To ensure that each new service
has a unique name, we must version the services. This is done via a simple renaming
mechanism whereby the child services (i.e., services resulting from the split) of a
parent service (service to split), are named as the concatenation of the name of the
parent and ".x", where x is the child number. To check whether or not child services
already exist in the service list, it is the content (protocol, port) that is compared, not
the name. The initial versioning of the services simply adds a "V.0" to the original
service name. As in a rule, the name of the services is used. All rules are adjusted
according to the initial versioning. All changes to services and rules are reflected in
the Service and Rule History.

5.2.2 Adjusting the Rules

Each time a sub-service gets carved-out or an intersection between two services gets
split off, adjustments to the rules base are required. All the rules containing the
original service must be adjusted to reflect the result of the split. The rules must also
be split on the basis that rules must adhere to our SoC design criteria. Adjustments
to the rule base occur at two instances of the algorithm: when a successful carve-out
is performed and when a successful perturbation is performed. Algorithm 2 (see
Figure 5.7) is essentially the same as Algorithm 1, with the further inclusion of pre-
processing, rule adjustments, and rule/service history tracking, in bold text (while
aggregating details of Algorithm 1 in a textual description).

5.2.3 Demonstration Data Sets

Engie provided exports from 15 Palo Alto firewalls in use within Belgium- and Paris-
based data centers. The data centers contain multiple firewalls with different fil-
tering strategies. We requested firewall exports that would represent the different
types of filtering strategies. Additional contextual information for each firewall can
be found below.

• AIMv2: Firewall used to filter in- and outbound traffic of Internet-exposed
resources.

• AdminBE: Firewall used to filter traffic between data center client hosting zones
and a shared management zone containing services as backup, and monitor-
ing and system management tools. The firewall is located in the Belgium-based
data center.

• AdminFR: Idem as AdminBE but for a firewall located in the Paris-based data
center.

• AWSDCN: Firewall that acts as a filter between the Engie backbone network
and the AWS Direct Connect (dedicated connection to AWS cloud data center
in Dublin).

• HOSTING-BE-EBL: Firewall protecting the client hosting zone for Electrabel
(a business unit of the Engie Group) in the Belgium-based data center.

66 Chapter 5. Brown-Field Artifact Creation and Demonstration

FIGURE 5.7: Rule adjustments and rule/service history tracking in
the ILS

• HOSTING-BE-ORES: Firewall protecting the client hosting zone for ORES (a
former part of Electrabel, no longer part of the Engie Group), in the Belgium-
based data center.

5.2. Brown-Field Artifact Demonstration 67

• HOSTING-BE-RAS: Firewall protecting Remote Access Resources, in the Belgium-
based data center.

• HOSTING-BE-SHARED: Firewall protecting resources that are shared between
various business units of the Engie Group, in the Belgium-based data center.

• HOSTING-BE-TRACTEBEL: Firewall protecting the client hosting zone for
TRACTEBEL (a business unit of the Engie Group), in the Belgium-based data
center.

• HOSTING-FR-COFELY: Firewall protecting the client hosting zone for COFELY
(a business unit of the Engie Group), in the Paris-based data center.

• HOSTING-FR-GRDF: Firewall protecting the client hosting zone for GRFD (a
former business unit of the GDF, no longer part of the Engie Group), in the
Paris-based data center.

• HOSTING-FR-RAS: Firewall protecting Remote Access Resources, in the Paris-
based data center.

• HOSTING-FR-SHARED: Firewall protecting resources that are shared between
various business units of the Engie Group, in the Paris-based data center.

• IAF: Firewall protecting access between the resources of the user network and
data center, via Identify Aware filtering rules.

• IoT-BE: Firewall protecting IoT related resources in the Belgium-based data
center.

The demonstration data set also contains an artificially-created rule base entitled
Demoset which was used to test the algorithm. Demoset contains as many anomalies
as possible to test special conditions that could occur but that are difficult to filter out
of the given exports.

5.2.4 Demonstration Results

In the following subsections, we review the demonstration environment, the sum-
mary table of the demonstrations, and the relationship between the Objective Func-
tion and the number of rules in the rule base. We continue with a discussion of the
impact of the algorithm on the number of service definitions, and have a closer look
at the evolution of the Objective Function during the algorithm’s execution. We con-
clude with an example of how rule and service definition changes are tracked during
algorithm execution.

Demonstration Environment

The algorithm is written in JAVA using JAVA SDK 1.8.181, developed in the Net-
Beans IDE V8.2. The demonstration ran on an MS Surface Pro (5th Gen) Model 1796
i5 - Quad Core @ 2.6 GHz with 8 GB of memory, running Windows 10.

Demonstration Overview

The algorithm results for the different rule bases can be found in Table 5.1 which
contains the following information:

68 Chapter 5. Brown-Field Artifact Creation and Demonstration

• Initial Number of Rules (NoR): number of rules as read from the firewall export
files.

• Initial Number of Services (NoS): number of services as read from the firewall
export files.

• Initial Number of Service Groups (NoSR): number of service groups as read
from the firewall export files.

• Pre-Processing Number of Rules (NoR): number of rules after pre-processing.

• Pre-Processing Number of Unique Services (NoUS): number of unique services
after pre-processing.

• Pre-Processing OF: the value of the Objective Function, after pre-processing
and thus at start of the algorithm.

• Final Number of Rules (NoR): the number of rules after applying the algo-
rithm.

• Final Number of Services (NoS): the number of service definitions after apply-
ing the algorithm.

• Final OF: the value of the Objective Function after applying the algorithm.

The algorithm performance indicators can be found in Table 5.2.

• Algorithm execution time: time required to disentangle the services and adjust
the rules.

• Total execution time: time required to perform the data loading, pre-processing,
disentanglement, to print the end result and log, and for the result to be dis-
played on the screen.

• Level 1 Iterator: number of times the outer loop of the algorithm has run.

• Level 2 Iterator: number of times the inner loop of the algorithm has run.

Rule Base Initial After Pre-Processing Final
NoR NoS NoSG NoR NoUS OF NoR NoS OF

AIMV2 207 250 6 498 226 577.9 1,263 228 228
AdminBe 461 597 41 1,443 547 3,234.1 8,994 547 547
AdminFR 655 717 46 2,584 669 4,469.3 29,377 668 668
AWSDCN 13 13 1 13 13 14.9 22 13 13
Demoset 21 24 8 104 21 44.9 249 34 34
HOSTING-BE-EBL 350 304 10 759 259 877.6 3,841 256 256
HOSTING-BE-ORES 462 336 13 1,306 274 1,205.6 4,936 267 267
HOSTING-BE-RAS 20 16 0 28 16 17.5 29 16 16
HOSTING-BE-SHARED 107 120 7 223 10 7 188.7 360 106 106
HOSTING-BE-TRACTEBEL 10 5 1 10 5 5 10 5 5
HOSTING-FR-COFELY 10 9 1 16 9 9 16 9 9
HOSTING-FR-GRDF 118 46 4 213 42 50 223 40 40
HOSTING-FR-RAS 21 16 1 29 16 17,5 30 16 16
HOSTING-FR-SHARED 198 139 6 359 126 250.2 509 127 127
IAF 32 10 0 34 10 10 34 10 10
IOT-BE 23 28 0 38 25 36.5 47 24 24

TABLE 5.1: Overview demonstration results

5.2. Brown-Field Artifact Demonstration 69

Rule Base Execution Information
ILS (ms) Total (ms) L1 Iterations L2 Iterations

AIMV2 187,227 396,000 25 1,507
AdminBe 520,944 824,000 135 13,609
AdminFR 820,847 1,242,000 154 23,165
AWSDCN 811 18,000 2 3
Demoset 1,358 120,000 22 430
HOSTING-BE-EBL 76,039 265,000 34 2,016
HOSTING-BE-ORES 193,436 632,000 59 2,587
HOSTING-BE-RAS 99 1,000 2 3
HOSTING-BE-SHARED 35,139 202,000 12 427
HOSTING-BE-TRACTEBEL 63 1,000 2 2
HOSTING-FR-COFELY 54 1,000 2 2
HOSTING-FR-GRDF 122 1,000 3 6
HOSTING-FR-RAS 96 1,000 2 36
HOSTING-FR-SHARED 78,503 210,000 19 929
IAF 68 1,000 2 2
IOT-BE 28,731 130.000 3 19

TABLE 5.2: Performance of the algorithm

Objective Function and the Number of Rules

In Table 5.3 and Figure 5.8, we represent the relationship between the % of OF im-
provement and the number of initial rules in the rule base (NoR). Three out of the six-
teen firewalls contain fully disjoint service definitions: HOSTING-BE-TRACTEBEL,
HOSTING-FR-COFELY and IAF. Those are also the firewalls with the fewest rules
and service definitions. The algorithm detects the full disjointness and leaves the
service definitions and rule base as is.

Six out of the sixteen firewalls are fairly close to having disjoint service definitions:
AWSDCN, Demoset, HOSTING-BE-RAS, HOSTING-FR-GRDF and IOT-BE. Those
firewalls have a number of rules and services definitions that are below 100
(HOSTING-FR-GRDF having a number of rules a bit above 100). The total
improvement of the OF is limited to about 25 %.

The remaining eight firewalls contain many more rules and service definitions and
the value of the difference between the initial and final value of the OF is at least
50 %, with a maximum of 85 %. These numbers confirm that, without proper rule
design criteria, the probability of getting a non-evolvable rule base drastically in-
creases with the size of the rule base. The trend between the size of the rule base
and the percentage of OF improvement (a good indicator for the status of the initial
evolvability), should be an asymptotic function trending toward 100 %. A logarith-
mic regression provides a good fit.

In Table 5.4 and Figure 5.9, we represent the relationship between the % OF im-
provement and the % of extra rules (growth rule base) due to the service disentan-
glement algorithm. We will revisit this relationship in Section 7.3.2.

70 Chapter 5. Brown-Field Artifact Creation and Demonstration

Rule Base Initial NoR %OF Improvement
HOSTING-BE-TRACTEBEL 10 0%
HOSTING-FR-COFELY 10 0%
AWSDCN 13 10%
HOSTING-BE-RAS 20 9%
Demoset 21 24%
HOSTING-FR-RAS 21 9%
IOT-BE 23 34%
IAF 32 0%
HOSTING-BE-SHARED 107 44%
HOSTING-FR-GRDF 118 20%
HOSTING-BE-SHARED 198 49%
AIMv2 207 61%
HOSTING-BE-EBL 350 71%
AdminBE 461 83%
HOSTING-BE-ORES 462 78%
AdminFR 655 85%

TABLE 5.3: %OF Improvement vs initial Number of Rules (NoR)

FIGURE 5.8: %OF Improvement vs number of rules in the rule base

5.2. Brown-Field Artifact Demonstration 71

Rule Base %OF Improvement %Growth Rule Base
HOSTING-BE-RAS 9% 4%
HOSTING-FR-RAS 9% 3%
AWSDCN 10% 69%
HOSTING-FR-GRDF 20% 5%
Demoset 24% 139%
IOT-BE 34% 24%
HOSTING-BE-SHARED 44% 61%
HOSTING-FR-SHARED 49% 42%
AIMv2 61% 154%
HOSTING-BE-EBL 71% 406%
HOSTING-BE-ORES 78% 278%
AdminBE 83% 523%
AdminFR 85% 1037%

TABLE 5.4: %Growth Rule Base vs % OF Improvement

FIGURE 5.9: % extra rules vs %∆OF

72 Chapter 5. Brown-Field Artifact Creation and Demonstration

Impact of the Algorithm on the Number of Service Definitions

Upon examination of the number of service definitions at the end of the algorithm,
we note that splitting the service definitions does not have a large impact on the
total number of services. See Figure 5.10 for an overview. There is even a tendency
toward the total number of service definitions decreasing slightly. It seems to be that
the algorithm rearranges the ports into more suitable groups, without having the
number of service definitions proliferate.

FIGURE 5.10: Impact of the algorithm on the number of services.

Evolution of the Objective Function During Algorithm Execution

To visualize what occurs during the algorithm execution, three indicators are tracked:
the OF, the outer loop iterations, and the inner loop iterations. The "Level 1 Indica-
tor" is the number of times that the outer DO loop of the algorithm has run. The
indicator measures the number of times a perturbation or successful carve-out is
done. The "Level 2 Indicator" (L1I) is the number of times the inner DO loop of the
algorithm runs within a given number of level 1 iterations. Each time the "Level 1
Iterator" increments, the "Level 2 Iterator" (L2I) is reset. We plot the evolution of
these three indicators against the cumulative number of level 2 iterations for two of
the firewalls with a number of rules below 100, in Figure 5.11 and Figure 5.12. In
Figure 5.13 and Figure 5.14 we show the evolution of the three indicators for two
firewalls containing in excess of 100 rules.

5.2. Brown-Field Artifact Demonstration 73

FIGURE 5.11: OF, L1I and L2I for the Demoset firewall.

FIGURE 5.12: OF, L1I and L2I for the HOSTING-FR-GRDF firewall.

74 Chapter 5. Brown-Field Artifact Creation and Demonstration

FIGURE 5.13: OF, L1I and L2I for the AdminBE firewall.

FIGURE 5.14: OF, L1I and L2I for AdminFR firewall.

5.3. Discussion and Conclusion 75

Tracking of Rule and Service Definition Changes

The algorithm tracks all changes that are made to the rules. As an example, the log
excerpt below shows the evolution of rule nr 6 from the Demoset, as provided by
the algorithm at end of execution.

• In pre-processing Step 4, the Service Group "SERVICE25", is replaced by its
members "SERVICE17" and "SERVICE19". The rule now has 6.1 as identifier.

• In pre-processing Step 5, the rule is split into two rules, 6.1.1 and 6.1.2 since
rule 6.1 was contained in two service definitions.

• In pre-processing Step 7, rules 6.1.1 and 6.1.2 get the versioned service defini-
tions. At this point, rule 6 is replaced by 6.1.1.1 and 6.1.2.1.

• During the ILS, the service "SERVICE17 V0" gets split into "Service 17 V0.2" and
the existing service "SERVICE19 V0", and the rule 6.1.1.1 splits into 6.1.1.1.1
and 6.1.1.1.2.

6;R6;SERVICE25,
*6.1;R6.1;SERVICE17,SERVICE19,
**6.1.1;R6.1.1;SERVICE17,
***6.1.1.1;R6.1.1.1;SERVICE17 V0,
****6.1.1.1.1;R6.1.1.1.1;SERVICE19 V0,
****6.1.1.1.2;R6.1.1.1.2;SERVICE17 V0.2,
**6.1.2;R6.1.2;SERVICE19,
***6.1.2.1;R6.1.2.1;SERVICE19 V0,

In summary, rule 6 was replaced by rules 6.1.1.1.1, 6.1.1.1.2 and 6.1.2.1.

The evolution of the services is tracked in a similar manner. In the log excerpt below,
the evolution of "SERVICE17" and "SERVICES19" is shown (versioning, splitting).

SERVICE17;UDP;40-41
*SERVICE17 V0;UDP;40-41
**SERVICE19 V0;UDP;40
**SERVICE17 V0.2;UDP;41

SERVICE19;UDP;40
*SERVICE19 V0;UDP;40

5.3 Discussion and Conclusion

We can conclude that an algorithm based on an ILS meta-heuristic disentangles ser-
vice definitions and is able to adjust the rule base accordingly. The algorithm is an
essential building block in a solution that can convert an existing firewall rule base
into a rule base that is fully compliant with the green-field artifact.

It is possible that fully-overlapping rules emerge during the algorithm execution.
Example:
Take a rule R1 that has C1 as source, H1 as destination, and S1 as service.
Now take a rule R2 that has C1 as source H1 as destination, and S2 as service.
Let’s consider that S1 and S2 overlap. The overlapping service is S3
Applying the algorithm would give:
– R1: C1 H1 S’1

76 Chapter 5. Brown-Field Artifact Creation and Demonstration

– R2: C1 H1 S3
– R3: C1 H1 S’2
– R4: C1 H1 S3
As can be seen, R2 and R4 become identical rules which still need to be filtered out.

The demonstration has provided insight into how the Objective Function evolves
during algorithm execution, as well as into the relationships between the number of
initial rules in the rule base and the corresponding value of the objective function,
and the number of rules at the end of the algorithm execution and the change in
Objective Function.

77

Chapter 6

Implications of the Artifact

In this chapter we investigate the implications of the artifact (green- and brown-field)
on different aspects related to the firewall. In Section 6.1, we start by looking at the
impact of the green-field artifact on the firewall ontology model. Section 6.2 looks at
the impact of different filtering strategies (other than Zero Trust) on the green-field
artifact. As a network rarely contains only one firewall, we investigate in Section 6.3,
the impact of the green-field artifact on a network with multiple firewalls. In Sec-
tion 6.4, we discuss the concept of Software-Defined Network and Software-Defined
Firewall. In Section 6.5 we continue examining the firewall scaling options resulting
from the green- and brown-field artifact. We end this chapter with Section 6.6, in
which we put forth the idea of a new artifact that allows the management of the fire-
wall in accordance with and using the artifacts presented in this dissertation. The
findings of this chapter have been published in [28].

6.1 Impact on the Ontological and Implementation Model

Application of the green-field artifact leads to a CE-free rule base with respect to a
given set of anticipated changes. Adding rules to the rule base due to the activation
of a new host, the activation of a new service on a host, and the addition of a new
client requiring access to a service on a host all become free of CE when the artifact
is used. Removal of rules due to removing a host or a service is also free of CE.

The green-field artifact enforces a new ontology for the firewall rule base. Apply-
ing a more restrictive ontology will also mean that the implementation model will
be more restrictive.

A DEMO FACT model taking those restrictions into account can be found in Fig-
ure 6.1. As the model is the basis for the implementation mode, the restrictions will
also be present there and will favor the usage of disjoint components and rules.

The green-field artifact enforces an implementation model that is shown in Fig-
ure 6.2. The restrictions required to ensure disjoint rules are installed. If a firewall
were to use this implementation mode, it would favor the usage of disjoint rules and
be evolvable under change.

78 Chapter 6. Implications of the Artifact

FIGURE 6.1: Ontology of an evolvable rule base

FIGURE 6.2: Implementation model of an evolvable rule base

6.2. Impact of the Filtering Strategies 79

6.2 Impact of the Filtering Strategies

6.2.1 Interconnect Filtering Strategy

In Section 3.4, we discussed the ZT filtering strategy. This strategy is useful to pro-
tect individual resources. However, firewalls are not only used to protect individ-
ual resources. Firewalls are also used to interconnect various parts of the network
and regulate the traffic that is allowed to travel within the network. A ZT filtering
strategy is not recommended in this case as the number of resources requiring in-
dividual protection would be too large. An Interconnect Filtering (ICF) strategy is
better suited for this job. The focus is on traffic between network segments, such as
VLANs, groups of VLANs or subnets, and not on the individual resources (such as
hosts) connected to those network segments. The rules are different as compared
to ZT rules. The level of granularity is a subcomponent of the network, not the re-
source. Filtering does not occur at port/service level. This means that there is one
fewer parameter to enforce disjointness between the rules.

The proposed green-field artifact can still be used to create an ICF strategy-based
rule base. The group objects used in an ICF strategy rule base would represent the
following:

• Destination group: a group containing the IP addresses, expressed in subnets
(VLAN’s), that make up a logical part of the network.

• Source group: a group of IP addresses expressed in subnets (VLAN’s), that
comprise a logical part of the network.

The VLANs can be organized in various ways, including according to a physical lo-
cation or organizational department. In the former case, there is a VLAN per build-
ing floor, and the sum of all VLANs represents the building. In the latter case, there
are VLANs per organizational unit that are grouped in different areas of the build-
ing. The sum of all VLAN-based organizational units in the building represents the
full building.

In ZT-based filtering, the port is the most fine-grained component where filtering
is performed. Conversely, in IC-based filtering, the VLAN is the most fine-grained
component where filtering is performed. As a result, for ICF, the design of the rule
base needs to be structured around the VLAN.

Applying the same philosophy as in the green-field ZT artifact, we can make a green-
field ICF artifact:

• Begin with an empty firewall rule base F. Add as the first rule the default Deny
rule.

• For each VLAN requiring access control, create a destination group. Populate
the group with the relevant IP address ranges representing the VLAN. The
intersection between all groups must be empty. A VLAN cannot be present
in two different logical parts of the network and thus cannot be present in
two groups. The naming convention of those groups is as follows: D_VLAN-
LogicalName-VLANnr

80 Chapter 6. Implications of the Artifact

• For each VLAN requiring access control (defined in the previous step), create
a source group. Populate the source group with the VLANs that require ac-
cess (client VLANs representing the sources). The naming convention of these
groups is as follows: S_D_VLAN-LogicalName-VLANnr.

• For each VLAN requiring protection create a rule whereby:

– Source: S_D_VLAN-LogicalName-VLANnr

– Destination: D_VLAN-LogicalName-VLANnr

– Protocol: ANY

• Add this rule at the top of the rule base.

The D_VLAN-LogicalName-VLANnr groups will enforce the disjointness of the
rules in the rule base. Adding and removing operations on a rule base created ac-
cording to this green-field ICF artifact is compliant with the evolvability conditions.

It should be clear that this kind of filtering cannot be combined with ZT-based filter-
ing. The disjointness of a rule cannot be guaranteed if ZT- and ICF-based rules are
used in the same firewall rule base:

• Protocol: violates disjointness as ICF rules have "any" as protocol.

• Destination: ZT rules will be a subset of ICF rules and thus violate disjointness.

• Source: not used to enforce disjointness.

An example of an ICF strategy use case is the merger between two companies, each
with their own network. As long as the security policies are not aligned between
both companies, there is a good reason not to interconnect the two networks di-
rectly. The interconnection is best done via a firewall. The firewall will filter between
IP ranges, for instance, allowing traffic between the two headquarters, but not yet
between remote sites (this simplified example does not consider potential IP range
overlap, NATing etc.).
Given that change is the only constant in companies, ICF-based filtering is com-
plicated. Moves between buildings, reorganization within buildings, addition and
removal of sites, and organizational changes all complicate upfront and stable seg-
mentation of network. Segmentation rules changes and segmentation principles are
mixed, and logical network segments no longer become disjoint. The result will be
evolvability issues in the rule base(s) and unforeseen consequences arising from the
changes.

Until this point in our thesis, we have addressed the ICF problem using a network-
centric approach. As network segmentation and company reorganization can result
in implementation conflicts, solutions such as identity-based firewalls emerged. In
those solutions, ICF-based filtering happens based on the identity of the user. When
a user tries to connect to certain parts of the network and hits an identity-based fire-
wall enforcing the ICF strategy, the firewall will confirm the identity of the user and
will filter based on this identity. This only works if:

• The firewall can establish the identity of the user associated with the source
(who is working on PC with IP = x.y.z.u).

• The firewall has access to a DB containing the identities and has mechanisms
to validate the identity.

6.2. Impact of the Filtering Strategies 81

FIGURE 6.3: Inbound and outbound on a single firewall

• The firewall has a set of rules stating which identity has access to which desti-
nations.

Such a setup is more user-centric. Access to the network is linked to the identity
of the user and not the building or organizational layout. As elegant as this solu-
tion may seem, in reality, it simply shifts the problem from the network space to the
identity space. Further investigation of this dimension is beyond the scope of this
research. However, it is worth pointing out that user identities, identify verifica-
tion (authentication), identity authorization, identity definition, identity implemen-
tation, identity and HR policies, and identity synchronization solutions are among
the most complex IS systems within an IT landscape. Researching the associated
evolvability issues and proposing solutions is worthy of separate PhD research. In
Section 5.2.3 we have encountered one such Identity-Aware Firewall - the IAF fire-
wall. The rules within that firewall were very simple because the actual complexity
is not located in the firewall rules, but rather within the firewall identify awareness
configuration.

6.2.2 Inbound and Outbound Filtering Strategy

An inbound filtering strategy — of which the ZT strategy is an example — will fil-
ter traffic close to the destination. The outbound filtering strategy will filter close to
the source. From a security perspective, it makes sense to stop the traffic as early as
possible on the network. On a single firewall, the notion of inbound and outbound
is relative. A firewall rule base is not aware of inbound or outbound. It only knows
source and destination and both can be located on either side of the firewall.

The artifact we propose was initiated based on a scenario wherein all sources are
located on the lefthand side and all destination are located on the righthand side of
the firewall, thus effectively implementing an inbound filtering st rategy. The same
artifact can be used in a single firewall setup wherein sources and destinations are
located on both sides of the firewall. As long as the artifact is strictly followed, all
rules will remain disjoint.
There are, however, some cautions required. Consider the case described in Fig-
ure 6.3 where a host1, located on the lefthand side of the firewall, needs to access a
host2 on the righthand side. Host2 also requires access to a service offered by host1.
According to the green-field artifact, the following two rules would be created:

• R1: C_H_host2_S_Y, H_host2_S_Y, S_Y, Allow

82 Chapter 6. Implications of the Artifact

– traffic from left to right

– H_host2_S_Y contains host2

– C_H_host2_S_Y contains host1

• R2: C_H_host1_S_X, H_host1_S_X, S_X, Allow

– traffic from right to left

– H_host1_S_X contains host1

– C_H_host1_S_X contains host2

What the firewall will do internally is consider the content of the groups, not the
group names themselves, and the rules are internally translated as

• R1: host1, host2, Y, Allow

• R2: host2, host1, X, Allow

Both host1 and host2 are members of different groups. Interchanging those groups
will result in rules which do not follow the logic of the green-field artifact but that
do represent the same rules inside the firewall.

• R1: H_host1_S_X, C_H_host1_S_X, S_Y, Allow

– R1: host1, host2, Y, Allow

• R2: H_host2_S_Y, C_H_host2_S_Y, S_X, Allow

– R2: host2, host1, Y, Allow

Group objects are used to increase the manageability of rule bases. The above makes
it clear that, if used incorrectly, manageability will decrease. Groups created to rep-
resent destinations cannot be used to represent sources in rules, and the converse
is also true. This is a manifestation of Separation of Concern. Representing sources
and destination are different concerns and should not be mixed.

Inbound and outbound filtering are also two different concerns. In the above sce-
nario, both are mixed on one firewall yet no immediate negative impact surfaces.
The impact will become visible once there are multiple firewalls in the network.
This will be discussed in the next section.

6.3 Multiple Firewalls

Until now we have largely examined networks containing one firewall. In this sec-
tion we investigate the impact of multiple firewalls between the source and the
destination. We begin by introducing the serial firewall filtering function and con-
tinue to investigate the validity of applying rules on all or only on certain firewalls
within a multi-firewall environment. We conclude this section by revisiting out-
bound/inbound filtering within the context of a multi-firewall setup.

6.3. Multiple Firewalls 83

FIGURE 6.4: Multiple firewalls in a network

6.3.1 The Serial Firewall Filtering Function

Let Pa be a package traveling over the network.

• Pa.source = the IP address of the source sending package Pa.

• Pa.destination = the IP address of the destination for package Pa.

• Pa.port = the Port targeted on destination Pa.destination.

Let ϕf(Ff,Pa) be the firewall filtering function that takes rule base Ff and package Pa
as input.


ϕf(Ff,Pa) = 0, if the package is blocked
–> there is no rule R in Ff such that the package is allowed
ϕf(Ff,Pa) = 1, if the package is allowed
–> there is a rule R in Ff such that the package is allowed

Let ftotal be the number of firewalls in a given network.
Let Φs

fw be the serial firewall filtering function for a network path containing a se-
ries of fw consecutive firewalls.

Φs
fw (Pa)= ∏

f= f w
f=1 ϕf(Ff,Pa)

Where: 
fw : 1 → ftotal

Φs
f w(Pa) = 0, if Pa is blocked by at least one of the fw firewalls

Φs
f w(Pa) = 1, if Pa is allowed by all fw firewalls

84 Chapter 6. Implications of the Artifact

See Figure 6.4 for a graphical representation of these concepts.

6.3.2 Applying the Rules on Some Firewalls

Within a given network, fw and Φs
fw will differ from the location of the source,

destination and the internal routing of the network. Let us assume that in such a
network, all firewalls have an evolvable rule base according to the proposed artifact.
The addition of a new resource, called "host_new", offering service "S_new", requires
the addition of new rules Rnew, such that "host_new" is protected according to the
ZT filtering strategy.

Let us assume that Rnew is only implemented on the firewalls in the path between
the initially-identified s ources (members o f C _H_host_new_S_new), a nd destina-
tion host_new.

As time passes, the initially-identified s ources r equire m odification: a ne w client
needs to access the host, or a client is removed from the network. According to our
original green-field artifact, adding or removing a client is just a question of adding
and removing the client from the group C_H_host_new_S_new. In our current sce-
nario, however, this is no longer the case. If a new client has a different network
path towards the host_new compared to the path in which the rule Rnew was ini-
tially implemented, then the rule Rnew must now be implemented on all firewalls on
the path between the new client and host_new. In addition, the source group must
be updated on all firewalls in all paths between all current clients and host_new. As
the possible network paths are a function of the network, and the network can grow
infinitely, a CE is being introduced. This is the worst kind of CE, as we will not know
upfront where adjustments are required, and a full investigation of the network is
required. An example of the described scenario can be found in Figure 6.5.

FIGURE 6.5: Apply the rules on some firewalls

6.3. Multiple Firewalls 85

6.3.3 Applying the Rules on all Firewalls

The only way to avoid the problem described in the previous section is to ensure that
all firewalls contain the same rule base. All manipulations of rules must be executed
on all firewalls s imultaneously. As the network grows, so will the number of fire-
walls, and again, a CE is being introduced. This action of this CE is less aggressive,
since it is now known that the manipulations are required on all firewalls. We have
already discussed the impact of rule base size on the firewall. Having to duplicate
all rules across the entire network will render the rule base even larger and less co-
herent. Rules would be added to firewalls which will never be activated, and groups
would contain objects that are irrelevant to the context of that specific firewall. With
such an approach, firewall manageability would decrease. In the above scenario, all
firewalls address all of the same concerns. Normalized Systems theory specifies that
this will have a negative impact on evolvability, as can be concluded from the above.

6.3.4 Restricting Inbound Traffic Filtering

The academic paper entitled “Minimizing the Maximum Firewall Rule Set in a Net-
work with Multiple Firewalls” [51] is closely related to the problem we are attempt-
ing to solve. According to [51], the inclusion of firewalls in a network such that the
rule base is minimal is an NP-complete problem requiring a heuristics-based solu-
tion. Although applying the heuristic-base algorithm described in [51] may mini-
mize the rule base over all firewalls, the evolvability of those rule bases is not dis-
cussed.

In Section 6.2.2, we mentioned that a network with one firewall combines both

FIGURE 6.6: Back-to-back firewalls

inbound and outbound filtering rules. In a network with two firewalls that are con-
nected in a back-to-back configuration — meaning that the firewalls are directly in-
terconnected and no resources are located in this interconnection — inbound and
outbound traffic filtering can be separated. This can be done by adding a new de-
fault rule, which states that all outbound traffic is allowed. Figure 6.6 illustrates the
setup, while Figure 6.7 and Figure 6.8 illustrate the construction of the rule bases of
F1 and F2. The rules R1 on both firewalls are disjoint with respect to the rule base in
which they are located as:

• on F1: C_H_F1Any_S_Any - represents all hosts protected by inbound traffic
by F1

86 Chapter 6. Implications of the Artifact

FIGURE 6.7: Rules on firewall F1

FIGURE 6.8: Rules on firewall F2

• on F2: C_H_F2Any_S_Any - represents all hosts protected by inbound traffic
by F2

• C_H_F1Any_S_Any ∩ C_H_F2Any_S_Any = ∅

and

• All source groups on F1 are subsets of C_H_F2Any_S_Any - represents all
hosts protected by inbound traffic by F2

• All source groups on F2 are subsets of C_H_F1Any_S_Any.

Thus, on both F1 and F2, the default outbound rule is disjoint with all other groups.
We again herein note the appearance of Separation of Concern. The concern of pro-
tecting a resource is only assigned to one firewall. If assigned to multiple firewalls,
evolvability issues will occur. This leads to the following design criteria:

• A firewall shall be clearly assigned to protect a set of resources. Those re-
sources are protected by the firewall via the inbound ZT traffic filtering strat-
egy.

• The firewall shall allow all outbound traffic from the set of resources it protects.

• If all firewalls are protecting their resources, there is no need for outbound
filtering.

6.4. Software-Defined Network/Firewall 87

FIGURE 6.9: Path with multiple firewalls

As illustrated, our artifact can be made compliant with such a setup, simply by
adding the “default Allow” rule and the creation of some additional groups.

The inverse of the above-described approach also applies: by default you shall al-
low all inbound traffic and filter on outbound traffic. Separation of Concerns would
be respected. The artifact would need to be revised as disjointness would need to
be enforced based on the combination of Service and Source rather than of Service
and Destination. The same reasoning applies for the inbound default Allow rule.
Although technically possible, this filtering strategy would be c onfusing. By com-
parison, consider the following scenario: A city needs to close an entry road due to
construction works. Traffic will be blocked as close to the construction site as pos-
sible (inbound filtering). It is impossible to block all roads, which could potentially
lead to the city (outbound filtering).

6.3.5 Apply Inbound Traffic Filtering to More Than Two Firewalls

What happens when there are more than two firewalls between two resources? Fig-
ure 6.9 illustrates the setup. When we apply the design criteria from the previous
section, we must conclude that F2 to Ffw-1 are not allowed to filter inbound traffic.
Those concerns are already assigned to F1 and Ffw. Firewall F2 to Ffw-1 must handle
other concerns such as:

• choke-point: Use a firewall as a kind of valve: Allow all or Deny all. This
comes in handy in case of network intrusions, and traffic needs to be blocked
asap in a simple way, without impacting existing routing.

• Interconnect filtering strategy: use those firewalls to control connectivity be-
tween network segments (see Section 6.2.1).

Note that for the Interconnect Filtering strategy, Separation of Concern must also be
respected. An interconnect firewall should be assigned to handle the interconnec-
tion of assigned ranges, and no other interconnect firewall should filter on the same
ranges. This again can quickly become complex and evolve into an NP-complete
problem. Measured advice would be to refrain from the usage of interconnect and
choke-point firewalls, and limit the number of firewalls in any network path to the
greatest possible extent.

6.4 Software-Defined Network/Firewall

Extending the inbound filtering strategy discussed in the previous section to its log-
ical limit equals providing each resource with its own firewall. This is what occurs

88 Chapter 6. Implications of the Artifact

in a Software-Defined Network (SDN) combined with a Software-Defined Firewall
(SDF). In a SDN, the network layer is virtualized inside a virtualization layer called
the hypervisor. The SDN is decoupled from the actual underlying physical network.
In the hypervisor layer, network components such as routers, switches, VLANs, load
balancers, and firewalls are all defined entirely in so ftware. To each virtual host de-
fined in/on the hypervisor, a virtual firewall can be at tached. A package does not
enter the network layer of the virtual hosts unless it successfully crosses the firewall.
SDF is better compared to an Operating System (OS)-based firewall (such as IP ta-
bles or Windows Group Policies). OS-based firewalls can only perform their filtering
function if the package is already "inside" the host.

For an SDF, the rule base is configured via p olicies. A policy defines the protocol
and port that can pass though the firewall. The policies are assigned to the firewall.
Given that the firewall is attached to only one host, disjointness for the destination,
by default, is guaranteed. However, multiple policies can be attached to one host,
and within those policies, overlaps and conflicts of protocols/ports and actions may
exist. Again, the conscious restriction of design space is required.

The previously-proposed artifact can be adjusted for use within an SDN context
by creating policies for Software-Defined F irewalls. The policies are the equivalent
of the Service Groups. They must be as fine-grained as p ossible. For each service
exposed on a host, a policy must be created. Policies may not overlap. Rather than
creating a destination group, the policies are attached to the host. As many policies
are attached to the host as there are services offered by the host. Access to the host
is provided by allowing explicit access of a client to the host. This corresponds to
creating a client group as defined in the artifact. Group membership means you can
access the host, and the policy attached to the host will authorize protocols and ports.

A Software-Defined Firewall in a Software-Defined Context is the best way to guar-
antee the ZT filtering s trategy. S DF a lso o ffers t he m ost e volvable architecture.
Add/remove of hosts to the hypervisor automatically adds/removes the associ-
ated host firewalls. A dd/remove o f r ules m eans a dd/remove o f p olicies and/or
attach/detach of policies. If the policies are created according to the proposed arti-
fact, evolvability is guaranteed.

6.5 Implication of the Artifact on Firewall Scaling

In an evolvable rule base, all the rules are disjoint from one another and each net-
work package can only hit one rule. This rule can be located in the beginning or
near the end of the rule base. As there is only one rule that can be hit, the rule base
may be split into multiple pieces and distributed in parallel across different firewalls.

Let F be a firewall rule base containing only disjoint rules created according to the
green-field artifact. As visualized in Figure 6.10, F can be split into fw sub rule bases,
which are spread over fw parallel firewalls. Each of the fw rule bases conclude with
the “Default Deny” rule.

A network package will attempt to traverse each firewall, but only one of the fire-
walls has a rule it can hit.

6.5. Implication of the Artifact on Firewall Scaling 89

FIGURE 6.10: Scaling of firewalls with an evolvable rule base

F = ∑
f= f w
f=1 Ff

Let ϕf(Ff,Pa) be the firewall filtering function that takes rule base Ff and package
Pa as input.

• ϕf(Ff,Pa) = 0 if the package is blocked - there is no rule R in Ff such that the
package is allowed

• ϕf(Ff,Pa) = 1 if the package is allowed - there is a rule R in Ff such that the
package is allowed

Let ΦP
fw be the parallel firewall filtering function. Then:

ΦP
fw(PA)= ∑

f= f w
f=1 ϕf(Ff,Pa)

Where:

• Φp
f w(Pa) = 0, if Pa is blocked by all of the fw firewalls.

• Φp
f w(Pa) = 1 if Pa is allowed by one of the fw firewalls.

• ∃!Ff ∈ F for f = 1 → f w | R ∈ Fj

A rule base that exclusively contains disjoint rules can scale horizontally (i.e., em-
ploy parallel firewalls). Firewalls with a non-evolvable rule base can only scale ver-
tically (i.e., employ a larger firewall). Scaling, however, does not come without sig-
nificant cost. Modern firewalls allow virtualization, but each virtual instance comes
at a cost as well. In addition to the horizontal scaling possibilities of an evolvable
rule base, the performance of an evolvable rule base can be boosted by moving the
most frequently used rules to the top. Check Point, a firewall vendor, suggests lo-
cating the rules that are most frequently hit (and applied) at the top of the firewall
table. In a rule base that is order-sensitive, this is a real issue. In a rule base that
is not order-sensitive, one could monitor the firewall to determine which rules are
hit most and then prioritize those rules without having to worry about the potential

90 Chapter 6. Implications of the Artifact

impact to other rules. Doing this dynamically would be even more powerful as the
firewall would be able to reorganize its rules according to variable daily traffic.

6.6 The Firewall Rule Base Analyser and Normalizer System

As the firewall provides considerable design freedom which could potentially lead
to evolvability issues, firewall management should be undertaken outside of the fire-
wall, ideally using a specialized tool that incorporates the artifacts discussed in this
dissertation. We characterize this tool as a Firewall Rule Analyser and Normalizer
System or FRANS (see Figure 6.11). Such a tool would ideally have the following
features:

• Enforces the usage of the green-field artifact.

• Analyzes an existing rule base — measures disjointedness levels — with the
brown-field artifact.

• Converts an existing rule base into an evolvable rule base using the brown-
field artifact.

• Will centrally manage all definitions: services, sources, destinations, rules.

• Provides full traceability on all changes performed on the definitions.

• Makes firewalls scale horizontally.

• Changes the rule order dynamically to increase performance.

All firewall rule management activities are done in the tool as opposed to via firewall
management consoles. As modern firewalls publish their management functionali-
ties via APIs, the tool can use these APIs to change rules and objects.

The creation of the fine-grained rule b ase b y h umans i s a n i ssue. T he green-field
artifact defines criteria for groups and rules that need to be followed s trictly. The
creation of a catalog of all possible services is required. For standard services and
tools, lists of assigned ports/protocols and international standardization organiza-
tions related to the Internet (e.g., iana.org) exist and may be reused. Note that the
Palo Alto firewall includes one such standard list of Application Objects (see Sec-
tion 5.2.3). Unfortunately, the same Palo Alto firewall allows the overwriting and
double definitions via Service Objects.

FRANS should expand the firewall rules in the fine-grained format, in accordance
with the naming conventions. Checks must also be performed against the group
definitions a nd c ontent i n a ccordance w ith t he g reen-field ar tifact an d vi a a user-
friendly interface. With this configuration, t he t ool c ould t hen p ush t he r ules to-
wards the firewall, which would effectively separate the management from the im-
plementation of rules. Such tools exist on the market. Examples include Algosec,
Tufin, F iremon. However, none of those tools consciously restrict the design space
for the purpose of enforcing the creation of an evolvable rule base.

While defining a r ule f or e ach s ervice m ay b e c onsidered c umbersome, i t i s pos-
sible to create roles such as "monitoring and management" (i.e., establishing which
is a grouping of smaller, disjoint services) in order to mitigate this. In this example,

6.6. The Firewall Rule Base Analyser and Normalizer System 91

FIGURE 6.11: Firewall management tool

the firewall administrator could create a rule specifying this "monitoring and man-
agement" role to express that the server needs to allow access to all monitoring and
management services. The tool would ideally expand these roles into the individual
rules for each disjoint service. Examples:

• "Monitoring and Management" = SSH + SFTP + FTP + SMTP + TELNET

• Host = x

• Rule : C_Hx_SMaM; Hx_S_MaM; S_MaM; allow

• Will be expanded to :

– C_Hx_S_SSH; Hx_S_SSH; S_SSH; allow

– C_Hx_S_SFTP; Hx_S_SFTP; S_SFTP; allow

– C_Hx_S_FTP; Hx_S_FTP; S_FTP; allow

– C_Hx_S_SMTP; Hx_S_SMTP; S_SMTP; allow

– C_Hx_S_TELNET; Hx_S_TELNET; S_TELNET; allow

The brown-field artifact should be included in the tool to read and analyze an exist-
ing rule base. The Disjoint Index of all groups and the total value of the Objective
Function can be calculated. These are important indicators for the level of evolv-
ability and the impact the firewall normalization process will have on the size of the
rules base. Highly non-evolvable rule bases may require additional firewall infras-
tructure to allow horizontal scaling. The tool could create new firewall instances on
a virtual infrastructure or spin up new cloud based firewalls on a cloud platform.

FRANS should convert existing rule bases into evolvable rule bases and deploy
those on the firewall infrastructure.

As FRANS should be a central firewall management platform, it could compare at
all times the defined policy in the tool to the active policy on the firewall. This would
allow detection of rule adjustments made directly on the firewall and even make fire-
wall rule bases immutable. In FRANS, additional information reflecting why rules
are deployed and links with application management tools could be made in order
to allow centralized and easily understandable security documentation.

93

Chapter 7

Evaluation and Discussion

In this chapter we evaluate and discuss the artifacts. The Design Science Framework
is used as the reference model, in combination with classic Research Methodology
practices as promoted by Campbell, Cook and Shadish [52]. We start by assessing
the results and the performance of the artifacts and point out existing shortcomings
of the artifacts in Section 7.1 . We continue in Section 7.2 by pointing out the applica-bility
and required evolution of the artifacts for the environment. In Section 7.3, we evaluate and
discuss the Rigor Cycle, by applying the principles of validity as pre-sented in [52]. We
end this chapter by outlining our contributions to the knowledge
base, concluding the evaluation and discussion of the Rigor Cycle in Section 7.4, and
by positioning the work as Enterprise Engineering instruments in Section 7.5.

7.1 The Artifacts

7.1.1 Green-Field Artifact Limitations

At its core, the green-field artifact represents a method and a set of design criteria for
use when setting up a firewall. Even if one has the luxury of setting up a brand-new
firewall, it would be difficult to manually apply the green-field artifact. This needs
to be accompanied by tooling, as explained in Section 6.6.

As outlined in Section 6.2, the green-field artifact can be adjusted to support dif-ferent
filtering strategies.

7.1.2 Big O of the Brown-Field Artifact

The Big O of an algorithm expresses the algorithm’s complexity, calculated based
on the worst-case scenario in terms of the number of operations required in function
of the size of the problem to be solved. This formula reflects the worst-case effort
required to complete the algorithm execution.
The algorithm contains two nested loops that both can iterate over the full neigh-
borhood, meaning the algorithm will be quadratic with respect to the size of the
neighborhood.
The number of operations performed in the innermost loop, such as Service_DI_list_Creator,
Service_split_Evaluator are also proportional to the size of the neighborhood.
We may thus conclude that the Big O of the complete algorithm is cubic - O = n3, where
n is the size of the neighborhood (= size of the solution = the number of ser-
vice definitions).

94 Chapter 7. Evaluation and Discussion

Rule Base Number of Unique Services (NoUS) Algorithm Execution Time (ms)
HOSTING-BE-TRACTEBEL 5 63
HOSTING-FR-COFELY 9 54
IAF 10 68
AWSDCN 13 811
HOSTING-BE-RAS 16 99
HOSTING-FR-RAS 16 96
Demoset 21 1,358
IOT-BE 25 28,731
HOSTING-FR-GRDF 42 122
HOSTING-BE-SHARED 107 35,139
HOSTING-FR-SHARED 126 78,503
AIMv2 226 187,227
HOSTING-BE-EBL 259 76,039
HOSTING-BE-ORES 274 193,436
AdminBE 547 520,944
AdminFR 699 820,847

TABLE 7.1: Brown-field artifact performance

FIGURE 7.1: Brown-field artifact performance

7.1.3 Performance of the Brown-Field Artifact

Algorithm execution time is measured as the time it takes to disentangle the services
after pre-processing. Figure 7.1 shows the relationship between the initial size of
the neighborhood (number of unique services) and algorithm execution time. The
exponent of the power function is a bit above two. This is consistent with the Big O,
where we expected a worst-case exponent of three.

Measures could be taken to ensure better algorithmic performance. The innermost
loop iterates over all services until it locates one that contains subgroups. All ser-
vices that already have a DI of 1 should not be further investigated. As the neigh-
borhood is sorted from high to low DI at the start of the inner loop, the inner loop
could stop as of the first service where a DI of 1 is encountered. According to meta-
heuristics, this value represents a form of algorithmic memory, indicating parts of
the neighborhood that can no longer improve and should thus not be investigated.

7.1. The Artifacts 95

7.1.4 Global Optimum

Does the heuristics-based algorithm establish the Global Optimum? It is quite dif-
ficult to formally prove that heuristic algorithms always provide the most optimal
solution. After all, the full solution space of all possible groups combining all possi-
ble ports is exponential (see combinatorics) and quickly becomes impossible to fully
search.
We do think that, given the initial solution, we have succeeded in converging on
the most optimal solution. Sub-optimal solutions always will have either subgroup
and/or overlapping groups. The algorithm filters o ut a ll s ubgroups i n t he inner
loop and, if no additional subgroups are found, it searches for overlaps, after which
it again scans for subgroups. As both inner and outer loop iterations search the en-
tire neighborhood, all possible subgroups and overlaps are located and eliminated.
While we are not presently able to provide formal proof, we nonetheless believe that,
from a given initial solution, the set of services that are disjoint and maximum in size
is found.

7.1.5 Brown-Field Artifact Limitations

Naming of the Services

The brown-field artifact tracks all changes in the service definitions by means of con-
tinuously changing the name of the services via a versioning mechanism. Although
the end result is disjoint services according to the green-field a rtifact, t he naming
of those services is not compliant with the naming convention put forward in the
green-field a rtifact. A mechanism to generate meaningful names is currently lack-
ing.

Non-Existing Service Definitions

During simulations involving the brown-field artifact, it was detected that the rule
base contained services that were not part of the service definitions. O n t he Palo
Alto firewall, those were "any" and "application-default" and on the other firewalls
only "any". The "any" service contains all ports and is a special case. To be compliant
with the green-field artifact, there should be only one service-related rule containing
"any", and that rule must be located at the end of the rule base. An elegant solution
for how to treat the rules containing "any" as a service is not yet a dimension of the
brown-field artifact.

When a service is set to "application-default" on a Palo Alto firewall, the firewall will
search the ApplicationGroup list for the content of the "application-default" group,
but will not search the Service or ServiceGroup list (see Section 2.5). The brown-
field artifact does not integrate the Application and ApplicationGroup definitions.
All rules containing "application-default" as service, are currently left untouched.

Destinations and Sources

The brown-field artifact does not transform the destination and source definitions in
accordance with the green-field a rtifact. Recall that, for each service, there should
be as many destination groups created as there are hosts offering the service and as
many source groups as there are destinations offering the service. To realize this,
scanning of the existing rule base is required in order to extract this information.

96 Chapter 7. Evaluation and Discussion

This is not currently a dimension of the brown-field artifact.

Strict application of the green-field artifact dictates that rules with multiple desti-
nations are subject to splitting whereby there is one rule per destination. This is also
not a current dimension of the brown-field artifact.

We have seen that destinations can not only be hosts but also subnets/VLANs. We
have also seen that mixing filtering at different levels in one rule base (ZT level at
the Host or ZT level at the VLAN/subnet) is not advantageous from an evolvabil-
ity point of view. Different filtering strategies must be split among different fire-
walls, which can then be configured in a serial-chain pattern, ranging from coarse-
to fine-grained filtering. The current brown-field artifact does not include detection
of differences in filtering strategy, nor does it split those rules in a new rule base.

7.2 The Application to the Environment

The previous section discussed current shortcomings of the artifacts. These limita-
tions make the artifacts not yet production-ready. Even if an artifact such as FRANS
would be available, could we be sure that it delivers the value that is assumed? Eval-
uating this question requires a different research path. The artifact would become a
socio-technical system and additional research aspects would come into play (adop-
tion, acceptance, integration in existing processes, change management, etc.). Ad-
dressing these dimensions is beyond the scope of this dissertation.

What we may however know with certainty is that the impact of the artifact on the
size of the rule base will evoke resistance to its implementation from firewall admin-
istrators. A large rule base is associated with complexity and performance issues,
similar to the widespread belief that a fine-grained modular software structure is
complex and thus must be accompanied by performance issues. We argue that these
arguments are flawed. The complexity argument can be disproved by the counter
argument that something large-but-structured is less complex than something small-
but-unstructured. A useful metaphor to illustrate this is that of a wall that is made
of brick and arranged using a simple pattern that repeats over and over. There is
no complexity. Similarly, the rule structure we propose in the green-field artifact is
a simple brick in a firewall that is repeated over and over. It is possible to know
what can be expected from each rule. This is not the case, however, when there is no
conscious design behind the rule base and an allowance for unstructured growth. In
the latter case, the second law of thermodynamics predicts that the system would
continue to evolve towards greater entropy.
The second argument of performance is disproved by the fact that an evolvable rule
base can scale horizontally while a non-evolvable rule base cannot. The counter ar-
gument could then be that additional firewalls would increases the cost of security,
however this reasoning is incorrect. Rather, the larger evolvable rule base will re-
flect a Zero-Trust policy, while the same cannot be said about a non-evolvable rule
base. High-level security policies require a specific level of filtering. Not applying
that level of filtering translates to non-compliance with the policy and an active ero-
sion of security. The evolvable rule base will thus reveal the true cost of higher-level
security policies.

7.3. The Usage of Existing Knowledge and Methodologies 97

7.3 The Usage of Existing Knowledge and Methodologies

In this section, we elaborate on two aspects of the Rigor Cycle: the usage of existing
knowledge bases and the usage of methodologies.

7.3.1 Existing Knowledge Base

This research uses available prior research on the relationships between rules and
firewall a nomalies. To the best of our knowledge, previous academic publications
have unfortunately not addressed the issue of evolvability in a structured way. The
findings of this work are not entirely unique in the sense that anomaly-avoidance
knowledge exists. Despite this, clear derived design criteria and pro-active design
is lacking. The Normalized Systems theory grounds the concept of evolvability and
we were able to translate this concept into measurable indicators: the DI and OF.
The field o f m eta-heuristics p rovides g uidance o n h ow t he o ptimization problem
associated with the brown-field artifact should be handled.

7.3.2 Methodologies

The Design Science Methodology allows and even promotes the integration of other
methodologies as a means of improving the rigor of the research. In Chapter 4
we demonstrated the green-field artifact by i nstantiation. The brown-field artifact
demonstration is an actual experiment which aims to validate the correct function-
ing of the algorithm and assess the impact the artifact has on the size of the rule base.

The construction of good experiments is well documented in the research method-
ologies used across the social sciences. More specifically, we refer to the work of
Campbell, Cook and Shadish [52] concerning the types of validity related to an ex-
periment. In the following subsections, we shall investigate the different validity
types relevant to our experiment in order to properly establish the limitations of the
experiment.
For this purpose, all definitions of validity types and validity threats derive from
[52].

Experiment Description

We will now examine the question "What is the impact of the service group disjoint-
ness level of a rule base on the size of the aforementioned rule base after application
of the brown-field artifact?". We shall define the Services Disjointness Index (SDI) as
the ratio between the value of the objective function OF and the number of services
S.

SDI = OF
S

SDI is 1 in a rule base exclusively containing disjoint services and greater then 1
if the rule base contains non-disjoint services. We would like to know whether or
not we may determine the increase in number of rules as a result of the application
of the brown-field artifact, based on the initial value of SDI.

The SDI is a fairly accurate measure for the statistical entropy of a rule base. The
macro-state is the number of services in a rule base, the micro-states being the num-
ber of possible services within a rule base. An evolvable and perfectly stable rule

98 Chapter 7. Evaluation and Discussion

Rule Base SDI RNIR
HOSTING-BE-TRACTEBEL 1 0
HOSTING-FR-COFELy 1 0
IAF 1 0
HOSTING-BE-RAS 1.0938 0.0357
HOSTING-FR-RAS 1.0938 0.035
AWSDCN 1.1069 0.6923
HOSTING-FR-GRDF 1.1905 0.0469
IOT-BE 1.4600 0.2368
HOSTING-BE-SHARED 1.7632 0.6143
HOSTING-FR-SHARED 1.9853 0.4178
Demoset 2.1377 1.3942
AIMv2 2.5573 1.5361
HOSTING-BE-EBL 3.3882 4.0606
HOSTING-BE-ORES 4.3999 2.7795
AdminBE 5.8759 5.2328
AdminFR 6.3938 10.3688

TABLE 7.2: RNIR vs SDI

base would have a ratio of micro-states to macro-state equalling 1. There are mul-
tiple configurations of services that deliver a statistical entropy of 1. We are aware
of at least two: one port per service, and the one we discovered with the brown-
field algorithm by disentangling the services. The SDI is, however, an imperfect
representation of the statistical entropy of the rule base. Indeed, we have demon-
strated that the brown-field algorithm may result in shadowing rules. An additional
operationalization to measure this would be required in order to fully express the
statistical entropy of a rule base.

In our experiment, the independent variable is SDI and the dependent variable is
the relative increase in the number of rules due to application of the treatment (i.e.,
application of the brown-field artifact). The relative increase in the number of rules
(RINR) is calculated as the difference between the number of rules (NR) after and
before application of the artifact, divided by the number of rules before application
of the artifact.

RINR =
NRa f ter−NRbe f ore

NRbe f ore

The result can be found in Table 7.2 and Figure 7.2. The correlation between the
independent and dependent variable is 0.9257.

Construct Validity

According to [52], construct validity is the degree to which an operational definition
of a specific concept under observation matches the actual concept. In our case, the

7.3. The Usage of Existing Knowledge and Methodologies 99

FIGURE 7.2: RINR vs SDI

concept we attempt to observe is the growth rate of the rule base that is attributable
to the application of the artifact, in relation to the initial state of the disjointness of
the services. We operationalized these concepts via SDI and RINR.

According to [52], construct validity faces a number of threats. Those potentially
relevant to the current analysis are listed and assessed below.

• Inadequate explanation of constructs: we believe that we have sufficiently ex-
plained what we sought to achieve. We also maintain that we have adequately
described the role of the artifact. While we contend that application of the
green-field artifact results in an evolvable rule base, we state that the current
version of the brown-field artifact properly addresses a necessary (disjoint ser-
vice definitions) but insufficient (possible shadowing rules and anthropomor-
phic service definition naming) condition for an evolvable rule base.

• Construct confounding: Construct validity can be threatened by failure to de-
scribe all constructs, resulting in incomplete construct inferences. We do not
have confounding constructs and we have fully operationalized each of our
concepts.

• Mono-operation bias: This type of bias may occur when there is only a sin-
gle operationalization of the construct (i.e., disjointness of all services in our
experiment) that both under-represents the construct of interest and measures
irrelevant constructs, thus complicating the capacity for inference. Constructs
and their operationalizations are calculated based on the directly-manipulated
variables within the algorithm. These exactly represent what we intended to
measure. The mono-operational bias is thus irrelevant with respect to our ex-
periment.

• Mono-method bias: This type of bias may occur when operationalizations
are used in only one method of measurement. As part of this dissertation,
we have developed a single type of brown-field artifact. That artifact is the
method by which the operationalizations occur. This is a potential weakness

100 Chapter 7. Evaluation and Discussion

which may be eliminated by using an alternative meta-heuristic (e.g., a con-
struct base heuristic [48]) that measures the same operationalizations and is
able to produce disjoint services with associated rules.

• Confounding constructs with levels of constructs: The inferences about the
construct that best represent study operations may fail to describe the limited
level of the constructs that were actually studied. For the creation of disjoint
services, there are no confounding constructs other than the ones that are de-
fined. As such, this threat is not applicable to our experiment.

In [52], additional construct validity threats are discussed, including: treatment-
sensitive factorial structure, reactive self-reporting changes, reactivity to the exper-
imental situation, experimenter bias, novelty and disruption effects, compensatory
equalization, competence rivalry, resentful demoralization, and treatment diffusion.
These dimensions are linked to the units that administer or receive the treatment.
In the social sciences, these are humans and/or social systems. In our experiment,
however, the units are firewall exports. Human agency is not relevant and so neither
are these construct validity threats.

Statistical Conclusion Validity

Could there be reasons for drawing invalid inferences about the existence and size
of covariations between variables?

In our case, there is no doubt about the covariance and causality of the variables. The
brown-field algorithm actively manipulates the number of rules when it lowers the
SDI. We could not determine a formula that expresses RINR in function of SDI. We
know that the full-carve-out operations can generate more rules than the intersect
carve-out. The value of SDI is a function of the number of overlaps (subgroups or
intersections), but the distribution between the overlap types is firewall-dependent.
To confirm these details, one must actively run the algorithm and count the number
of times the different carve-outs are performed.

As such, we are confident in our conclusion that the various potential threats to sta-
tistical validity (e.g., low statistical power, violated assumptions of statistical tests,
fishing, the error rate p roblem, unreliability of m easurement, extraneous variance
between experimental settings, restriction in range, unreliability of treatment imple-
mentation, and inaccurate effect size estimation) are not applicable to our experi-
ment.

Internal Validity

Internal validity concerns the extend to which the observed co-variation between A
and B actually reflects a causal relationship between A and B. A and B are said to
have a causal relationship when: a) cause precedes the effect, and b) cause is posi-
tively correlated to the effect such that the effect would fail to occur in the absence
of the cause.

In our experiment, we observed the relationship between the cause (i.e., the varia-
tion of SDI) and the effect (i.e., the variation RINR). For a given rule base, lowering
the SDI means splitting services such that the overall disjointness of the services de-
clines. Splitting services requires splitting of rules. There is thus no question about

7.3. The Usage of Existing Knowledge and Methodologies 101

the causal relationship — cause and effect has in fact been programmed into the al-
gorithm.

Below we review the various potential threats to internal validity and assess whether
they may or may not have relevance to our experiment.

• Ambiguous temporal presence: This concerns the lack of clarity regarding
what is cause and what is effect and if the former precedes the latter. As out-
lined above, for the present study, the relationship between the two has been
fixed inside the algorithm.

• Selection bias: This bias may occur when there is a systematic difference in
characteristics between the units that could also exert influence over the ef-
fect. We assert that the present study does not introduce this bias type. Rather,
differences in the initial value of the SDI are welcomed as this is the indepen-
dent variable we are manipulating. The differences in the initial value of the
number of rules are immaterial as we measure the relationship between cause
and effect as the relative difference between pre- and post-application of the
brown-field artifact, irrespective of absolute values.

• History: This threat may be introduced within experimental scenarios where
events occurring concurrently with treatment cause or contribute to the ob-
served effect. During the execution of the brown-field artifact, there are two
reasons why a rule is split. The first is to be found in the pre-processing phase,
wherein the rule base is prepared such that one rule contains only one service.
The second reason occurs during the splitting of service definitions and associ-
ated rule adjustments. The extra rules generated due to pre-processing are not
taken into account when measuring the effect. We measure between start and
end of the ILS, not between start and end of the brown-field artifact. We thus
conclude that we may exclude the history effect.

• Maturation: This occurs when the treatment effect is confused with naturally-
occurring changes over time. The firewall exports were all taken at a certain
point in time (March 2021) and were not subsequently refreshed. Natural evo-
lution due to new rules or policy changes are thus unable to exert influence
within the experiment.

• Regression artifacts: When units are selected for their extreme scores, they
will often have less extreme scores on other variables, and such occurrences
may be confused with a treatment effect. The firewall exports used in the
present study were all provided by a firewall administrator. We requested
and received a set of firewall exports that protect different kinds of data center
zones and thus have different filtering strategies. We observed considerable
variation in the provided firewalls with respect to initial size and initial value
of the SDI. We are thus confident that the firewall administrator randomly
selected the firewalls.

• Attrition: Attrition, or experimental mortality, refers to the fact that fewer sub-
jects complete the treatment relative to the number of initial participants and,
as such, not all participant data is represented in the final results. Initially, due
to the firewall export format and issues with unexpected characters in the ex-
port and export conversion files, not all exports resulted in a successful run
of the algorithm. This prompted our introduction of the pre-processing phase

102 Chapter 7. Evaluation and Discussion

into the brown-field algorithm as an attempt to eliminate those issues. This
measure resulted in usage of all provided exports, thus eliminating any con-
cerns of attrition.

• Testing: This threat may occur when testing of the treatment can influence the
final experiment and the scores. This bias was not present in the current study,
as multiple runs of the algorithm utilizing identical data resulted in the same
result across runs.

• Instrumentation: Changes in measurement instruments over time, even in the
absence of treatment, can mimic a treatment effect. Running the brown-field
artifact on a Windows or a Linux machine did not have any effect on the end re-
sult. Only processing speed could have been influenced (but only marginally).

• Additive and interactive effects of multiple validity threats: Interactions of
the above-mentioned threats may impact observed outcomes. As we have
compensated for all relevant threats, and other threats are not applicable, we
conclude the additive effect was not a factor in our experiment.

External Validity

External validity relates to the extent to which a causal relationship holds across
variations in units, settings, treatments, and outcomes. In our experiment, units
varied (e.g., different firewall functions in the data center) while settings, treatments
and outcomes remained constant.

• Interaction of the causal relationship with units: The relationship between
SDI and RINR is clear in the scope of our experiment. We do however re-
frain from making larger claims about this relationship and the size of the re-
lationship, as we used only a limited amount of firewalls housed in Engie data
centres. Data about additional firewalls, inside and outside of Engie, could be
useful for making statements of a more general nature.

• Interaction of the causal relationship over treatment variations: We only cre-
ated one kind of brown-field artifact. We cannot make inferences as to what
other types of artifacts would produce in terms of outcomes. What is clear
is that the ILS-based algorithm does allow the disentanglement of the service
groups and thus provides a working solution to achieve service group disjoint-
ness.

• Interaction of the causal relationship with outcomes: The outcomes of the
algorithm are the same.

• Interaction of the causal relationship with settings: The settings have no im-
pact on the outcome of the algorithm result. A different development and
execution environment (e.g., programming language, OS, hardware) can exert
an impact on the total execution time, but not on the result.

• Context-dependent mediation: there are no mediators in the relationship be-
tween SDI and RINR.

7.4. The Additions to the Knowledge Base 103

Validity Summary

Based on the preceding, we are able to make the following claim regarding the rela-
tionship between SDI and RINR:

In the context of data delivered by Engie from data center firewalls based in Belgium and
Paris, the Iterated Local Search-based brown-field algorithm successfully disentangles the
services into disjoint services, and adjusts the rule base accordingly. The success of the dis-
entanglement is measured through SDI - the Services Disjointness Index - which has a value
greater than one (1) at start the algorithm and ends with value of one (1) once the algo-
rithm has been run. There is a causal relationship between the value of SDI at start of the
algorithms and the relative increase in terms of the number of rules, expressed as RINR,
resulting from the application of the algorithm. The data does not currently allow for signifi-
cant statements to be made regarding the complexity (linear, polynomial, exponential) of the
relationship between SDI and RINR.

7.4 The Additions to the Knowledge Base

In this section, we restate our contributions to the knowledge base related to the
domain of firewalls. To the best of our knowledge, our conclusions are not found
within the existing academic or industry literature.

7.4.1 Size of the Problem

The solution/problem space of all possible firewall rules that can be made on a fire-
wall given a set of client and hosts is mind-bogglingly large.

f jmax = 2.

(
cj

∑
a=1

(
cj
a

))
.

(
hj

∑
a=1

(
hj
a

))
.

(
217

∑
k=1

(
217

k

))
(7.1)

where cj = fc(N) and hj = fh(N)

Executing this formula using relatively small numbers, such as ten clients, five hosts
and five services, already results in astronomically-big numbers (see example in Sec-
tion 2.3.2). The probability is thus small that a firewall administrator would consis-
tently select those rules out of the potential design/solution/problem space which
reliably result in an evolvable rule base. As such, conscious restriction of the design
space is required.

7.4.2 The Green-Field Artifact

The green-field artifact provides design guidance to create a rule base that will be
free of CEs and thus evolvable. The design criteria are hardly a surprise and confirm
heuristic knowledge. The demonstration of the artifact makes it clear that any kind
of aggregation at service or host level immediately opens the door to CEs.

7.4.3 The Brown-Field Artifact

The ILS-based brown-field artifact is a first component within a larger solution which
converts existing non-evolvable rule bases into evolvable rule bases.

104 Chapter 7. Evaluation and Discussion

7.4.4 Impact of the Brown-Field Artifact on the Size of the Rule Base

As SoC has been meticulously applied, the choice of a fine-grained rule base is un-
surprising. The relationship between the level of service disjointness and extra rules
has been investigated. Additional runs of the algorithm with firewalls from differ-
ent companies would provide further insight into the complexity of this relationship
(and establish whether it is linear, polynomial or exponential).

7.4.5 Measuring the Evolvability of a Firewall

We were able to operationalize one aspect of the evolvability of a firewall, namely
the need for disjoint services. Independent from the meaning and functions of the
various service ports within the rule base, the SDI is an important indicator for the
evolvability of the firewall. If SDI is greater than 1, the door is left open to the cre-
ation of non-evolvable rules. The SDI represents the statistical entropy of the service
configurations in a rule base and is a good proxy for the statistical entropy of the rule
base.

To measure all aspects of evolvability and statistical entropy in accordance with the
green-field artifact, a second index concerning the destinations would need to be
developed.

7.4.6 Firewall Scaling

The artifacts produce a fine-grained rule base. A large number of rules in a rule base
will have a detrimental impact on performance. But creating an evolvable rule base
also provides the answer to this problem, given that only an evolvable rule base will
scale horizontally.

7.4.7 Multi-Firewall Design Guidance

Design guidance for one firewall is lacking, and this is true to an even greater extent
for multiple firewall configurations. Although not worked out on the same level
of detail of single firewall design criteria for evolvability, we do provide alternative
ways of thinking about multiple firewall setups.

7.4.8 Contribution to NS Theory

This work started with the question of whether or not NS theory may be used to
solve evolvability issues of IT infrastructure components. We took the example of
the firewall and have successfully demonstrated that a notoriously non-evolvable IT
infrastructure component can be stabilized under change, by meticulously applying
SoC to the design of firewall rules.
There are other IT infrastructure systems that would benefit from a similar approach,
including Identify and Access Management (IAM), applications of Windows poli-
cies, application of AWS policies and IAM roles. These are just a few systems that
also have some form of embedded rules embedded with potential to conflict with
each other, resulting in unexpected behavior and CEs. NS theory can help investi-
gate the problems of evolvability and provide the means to solve them.

7.5. Artifacts as Enterprise Engineering Instruments 105

7.5 Artifacts as Enterprise Engineering Instruments

The work presented in the doctoral thesis is not far away from practical usage in
an organization. The discipline of Enterprise Engineering (EE) takes that premises
that organization and their way of work, are consciously created and organized, and
can thus be consciously re-created and re-organized. Recall that evolvable rule bases
are actually a necessity for enterprises as they allow continuous change without im-
pacting existing systems and without the erosion of cybersecurity. Positioning our
artifacts as Enterprise Engineering instruments seems thus relevant.
EE promotes the usage of grounded methodologies and theories to understand what
is going on in an enterprise and engineer/re-engineer the organization accordingly.
We position this work in the so called Five Way Framework (see Figure 7.3). The
framework aids in discussing and evaluating a methodology and we will briefly po-
sition the proposed methodology in this work (create evolvable rule bases), into this
framework.

FIGURE 7.3: The Five Way Framework (from [44])

7.5.1 Way of Thinking (WoT)

Evolvability is the main concern of this work and is fully supported by the Normal-
ized Systems theory. The theoretical foundations about system stability and statis-
tical entropy are the paradigms used to study the evolvability issues of the firewall
rule base.

7.5.2 Way of Modeling (WoM)

We used ontological modeling techniques and data modeling techniques to demon-
strate that current firewalls offer no protection against the creation a non-evolvable
rule base. They motivate the usage of additional constraints that need to be en-
forced by means of artifacts, to obtain evolvable rule bases. Mathematical modeling
has been used to express non-evolvability in calculable parameters (DI, OF, SDI)
and the proposed brown-field artifact activity manipulates the rule base to improve
the values of those parameters towards values corresponding with an evolvable rule
base.

106 Chapter 7. Evaluation and Discussion

7.5.3 Way of Working (WoW)

The green-field artifact dictates a new way of working with regards to the creation
of rules. They provide the necessary criteria to follow to obtain evolvable rule bases.

7.5.4 Way of Supporting (WoS)

This work proposes a tool, such as FRANS, to support the application of the different
artifacts. Additional work is required to convert and integrate the green- and brown-
field artifacts into such tool. The groundwork has been done, it is more a matter of
organizing and presenting the functionalities in a user-friendly application.

7.5.5 Way of Organizing (WoO)

Introducing and implementing a tool such a FRANS into an organization is a com-
pletely different subject than making a tool that answers to the requirements. FRANS
becomes a socio-technical system, that introduces conceptual changes (create evolv-
able rule bases) and organizational changes (new change process, new ways to ex-
press the changes, new ways to implement the changes). It must be accompanies by
change management and its success must be measured using IS Research Method-
ologies. The WoO was not in scope of this work.

107

Chapter 8

Conclusion and Future Work

This final chapter reiterates the work that has been undertaken, followed by a sum-
mary of this work’s contribution to the fields of firewall management and NS theory
application. We end this monograph by summarizing its limitations and pointing
towards future research.

8.1 Conclusion

In Chapter 1 we introduced the context for this research. The concepts and function-
ing of the TCP/IP firewall and Normalized Systems theory were introduced. We
then outlined the research problem: how to create an evolvable rule base and how
to convert the firewall from a non-evolvable system to an evolvable system. We pro-
vided a rationale for the usage of the Design Science approach as methodology for
our research and formulated our research objective accordingly.

In Chapter 2, the problem was discussed and explained. A summary of existing liter-
ature that relates to the firewall issues was provided, followed by the introduction of
the two root causes of evolvability issues: relationships between rules and rule-order
sensitivity. To further explain the complexity of the problem, we used combinatorics
(based on a network containing clients, hosts and services) to calculate the size of
the firewall solution/problem space.Based on the exchange of essential information
required to create a firewall rule, an ontological model of the firewall rule base was
proposed. In order to understand how such an ontological model is implemented in
commercial firewalls, we reverse-engineered the data model of the rule base of three
different firewall vendors, based on firewall exports. Based on the ontological and
implementation models, we concluded that firewalls do little to avoid relationships
between rules, and offer no protection against the creation of a non-evolvable rule
base.

In Chapter 3, we defined the requirements for two artifacts: a green-field artifact
aimed at providing design criteria for an evolvable rule base, and a brown-field ar-
tifact allowing the conversion of an existing non-evolvable rule base into a rule base
that implements one of the green-field artifact’s necessary conditions, i.e. disjoint
services.

In Chapter 4, the green-field artifact was developed, which employs NS-related SoC,
and was demonstrated via validation-by-instantiation.

In Chapter 5, the brown-field artifact (which disentangles services and adjusts the
rule base accordingly) was created employing the Iterated Local Search meta-heuristic.
We explained the various components of the ILS, and where possible, provided

108 Chapter 8. Conclusion and Future Work

mathematical proof. The brown-field artifact was demonstrated on firewall exports
from Engie data centers, and was created using the Iterated Local Search meta-
heuristic.

Chapter 6 investigated the artifact implications. The green-field artifacts impacts
the original ontological model and thus prompt to propose a new one. The green-
field artifact is impacted by filtering strategies and we have shown how they can be
adjusted accordingly. As networks rarely contain only one firewall, we examined the
relation between the green-field artifact and multiple firewalls. We found that ap-
plying the green-field artifact will result in a fine-grained rule base containing more
rules compared to a rule base containing aggregations at service and destination
definitions. A larger rule base potentially impacts firewall performance. However,
we showed that an evolvable rule base is the only kind of rule base that can scale
horizontally, thus effectively eliminating its own drawback as horizontal scaling can
improve performance.

Chapter 7 evaluated and discussed the artifacts by means of considering potential
limitations and weaknesses of the artifacts and the experiments conducted with the
brown-field artifact. Particular attention was given to the evaluation of the exper-
iments, which in addition to exploring the correct functioning of the brown-field
algorithm, also studied the relationship between the level of service entanglement
of a rule base, and the rule base growth that can be expected due to applying the
brown-field artifact. We meticulously positioned all of our work within the Rele-
vance and Rigor Cycles of the Design Science Framework, as well as the various
components comprising the framework.

8.2 Contributions

The issues associated with firewalls have been known for a long time, and although
considerable research has been undertaken on the topic in the beginning of the 21st
century, common observations of what occurs "in the swamp of practice" suggests
that little actionable guidance is available. Industry-security reports describe the
need for complexity reduction, as well as for transparency and automation, but
these rarely provide actionable guidance for converting an existing rule base into
an evolvable rule base and pro-actively maintaining evolvability. How can a ZT
policy be implemented if the rules that are created are not fine-grained? How can
automation occur in the absence of knowing what is being automated? How can
automation occur in a system that becomes increasingly non-evolvable over time?
We strongly assert that the issue is not resolved and that the fundamental problems
behind firewall evolvability are being ignored by the industry and practitioners .

In this work we re-positioned these issues and contributed to their deeper under-
standing and resolution. We calculated the size of the solution/problem space of a
firewall within a given network and observed that it grows exponentially. In the ab-
sence of a meticulously-followed set of design rules, expecting to always select those
rules which lead to evolvable rule bases is like hoping to win the lottery on a daily
basis. Because humans are not machines, meticulously following a set of rules is
better left to machines and algorithms, which would follow the criteria as proposed
in the green-field artifact. NS theory provided us with the theoretical background

8.3. Limitations and Future Research 109

on evolvability and we were able to operationalize indicators for measuring the de-
gree of evolvability of a component that plays an essential role in the evolvability
of a rule base: disjoint services. Using meta-heuristics, we developed an artifact
that is able to disentangle the services from a rule base and adjust the rule base ac-
cordingly, thus bringing the rule base a step closer to evolvability. We studied the
relationship between the degree of service disjointness and the growth of the rule
base attributable to the application of our brown-field artifact. We observed an in-
crease in rule numbers which might be considered harmful to firewall performance.
However, this may be countered by the fact that an evolvable rule base is the only
type of rule base with an infinite capacity to horizontally scale and dynamically re-
order rules in order to increase performance. As networks rarely contain only one
firewall, we also provided guidance for a multi-firewall setups.

This work build on NS theory and domain knowledge about firewalls. It contributes
to the value of NS theory as a design theory and as an excellent instrument to study
evolvability issues across a multitude of domains.

8.3 Limitations and Future Research

This work is an important yet incomplete step toward the evolvable TCP/IP fire-
wall. The green-field artifact needs to be converted into software that will take a
high-level security requirement as input, "expand" it into the required fine-grained
rules, and push the rules to a firewall. The brown-field artifact needs to be extended
to re-organize the destinations and sources in accordance with the green-field arti-
fact, and requires a solution to naming services such that they are in line with the
green-field artifact. These would all be components of the FRANS artifact.
While the requisite groundwork has been established, the remainder needs to be
built. We thus regard this not as future research, but rather as future work.

Future research is however indeed required in order to better position the complex-
ity of the relationship between SDI and RINR. We also posit that this work provides
a base-line from which to study the evolvability of other IT infrastructure rule-based
systems, such as Identity and Access Management, or various types of policy mech-
anisms used in cloud-based infrastructures (such as AWS IAM roles and policies). A
further line of inquiry would be to investigate how other rule-base systems (such as
taxing rules or subsidy attribution) could benefit from a more evolvable design.

111

Bibliography

[1] P. De Bruyn, Generalizing Normalized Systems Theory : Towards a Foundational
Theory for Enterprise Engineering. PhD thesis, University of Antwerp, 2016.

[2] P. Huysmans, On the Feasibility of Normalized Enterprises: Applying Normalized
Systems Theory to the High-Level Design of Enterprises. PhD thesis, University
Antwerp, 2011.

[3] D. Van Nuffel, Towards Designing Modular and Evolvable Business Processes. PhD
thesis, University of Antwerp, 2011.

[4] E. Vanhoof, P. Huysmans, W. Aerts, and J. Verelst, “Evaluating accounting in-
formation systems that support multiple gaap reporting using normalized sys-
tems theory,” in Enterprise Engineering Working Conference, pp. 76–90, Springer,
2014.

[5] G. Oort, Design of Modular Structures for Evolvable and Versatile Document Man-
agement Based on Normalized Systems Theory. PhD thesis, University of Antwerp,
2019.

[6] G. Haerens, “Investigating the applicability of the normalized systems theory
on it infrastructure systems,” in Workshop on Enterprise and Organizational Mod-
eling and Simulation, pp. 123–137, Springer, 2018.

[7] J. D. Day and H. Zimmermann, “The osi reference model,” Proceedings of the
IEEE, vol. 71, pp. 1334–1340, 12 1983.

[8] A. Tanenbaum and D. Wetherall, Computer Networks - 5th edition. Pearson, 2013.

[9] W. Stevens, TCP/IP Illustrated - Volume 1 - the Protocols. Addison-Wesley Pub-
lishing Company, 1994.

[10] Firemon, “Firewall cleanup recommendations,” Firemon whitepaper,
https://www.firemon.com/resources/ 2018.

[11] Firemon, “2017 state of the firewall,” Firemon whitepaper,
https://www.firemon.com/resources/ 2017.

[12] Firemon, “2018 state of the firewall,” Firemon whitepaper,
https://www.firemon.com/resources/ 2018.

[13] Firemon, “2019 state of the firewall,” Firemon whitepaper,
https://www.firemon.com/resources/ 2019.

[14] M. Bennet, “Zero trust security: A cio’s guide to defending their business from
cyberattacks,” Forrester Research, June 2017.

[15] H. Shel and A. Spiliotes, “The state of network security: 2017 to 2018,” Forrester
Research, November 2017.

112 BIBLIOGRAPHY

[16] H. Mannaert, J. Verelst, and P. De Bruyn, Normalized Systems Theory: From Foun-
dations for Evolvable Software Toward a General Theory for Evolvable Design. Koppa,
2016.

[17] H. Mannaert, J. Verelst, and K. Ven, “The transformation of requirements into
software primitives: Studying evolvability based on systems theoretic stabil-
ity,” Science of Computer Programming, vol. 76, no. 12, pp. 1210–1222, 2011.

[18] H. Mannaert, J. Verelst, and K. Ven, “Towards evolvable software architectures
based on systems theoretic stability,” Software: Practice and Experience, vol. 42,
no. 1, pp. 89–116, 2012.

[19] P. Huysmans, G. Oorts, P. De Bruyn, H. Mannaert, and J. Verelst, “Positioning
the normalized systems theory in a design theory framework,” in International
Symposium on Business Modeling and Software Design, pp. 43–63, Springer, 2012.

[20] H. Mannaert, P. De Bruyn, and J. Verelst, “On the interconnection of cross-
cutting concerns within hierarchical modular architectures,” IEEE Transactions
on Engineering Management, 2020.

[21] Algosec, “Firewall management - 5 challenges every company must address,”
Algosec whitepaper, https://www.algosec.com/resources/.

[22] H. A. Simon, The Sciences of the Artificial. MIT press, 2019.

[23] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design science in information
systems research,” Management Information Systems Quarterly, vol. 28, no. 1, p. 6,
2008.

[24] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, “A design sci-
ence research methodology for information systems research,” Journal of man-
agement information systems, vol. 24, no. 3, pp. 45–77, 2007.

[25] S. Gregor and A. R. Hevner, “Positioning and presenting design science re-
search for maximum impact,” MIS quarterly, pp. 337–355, 2013.

[26] P. Johannesson and E. Perjons, An Introduction to Design Science. Springer, 2014.

[27] G. Haerens and P. De Bruyn, “Using normalized systems to explore the possi-
bility of creating an evolvable firewall rule base,” in The 11th International Con-
ferences on Pervasive Patterns and Applications (PATTERNS 2019), pp. 7–16, May
2019.

[28] G. Haerens and H. Mannaert, “Investigating the creation of an evolvable fire-
wall rule base and guidance for network firewall architecture, using the nor-
malized systems theory,” International Journal on Advances in Security, vol. 13,
no. 1&2, pp. 1–16, 2020.

[29] G. Haerens, “Ontological analysis of the evolvability of the network firewall
rule base,” in Proceedings of the 20th CIAO! Doctoral Consortium, and Enterprise
Engineering Working Conference Forum 2020, vol. Vol-2825, 2020.

[30] E. Al-Shaer and H. Hamed, “Design and implementation of firewall policy ad-
visor tools,” DePaul University, CTI, Tech. Rep, 2002.

BIBLIOGRAPHY 113

[31] P. Eronen and J. Zitting, “An expert system for analyzing firewall rules,” in
Proceedings of the 6th Nordic Workshop on Secure IT Systems (NordSec 2001), vol. 11,
pp. 100–107, 2001.

[32] M. Abedin, S. Nessa, L. Khan, and B. Thuraisingham, “Detection and resolution
of anomalies in firewall policy rules,” Proceedings of the IFIP Annual Conference
Data and Applications Security and Privacy, pp. 15–29, October 2006.

[33] Y. Bartal, A. Mayer, K. Nissim, and A. Wool, “Firmato: A novel firewall man-
agement toolkit,” ACM Transactions on Computer Systems (TOCS), vol. 22, no. 4,
pp. 381–420, 2004.

[34] A. Wool, “Architecting the lumeta firewall analyzer.,” in USENIX Security Sym-
posium, pp. 85–97, 2001.

[35] S. Hinrichs, “Policy-based management: Bridging the gap,” in Proceedings
15th Annual Computer Security Applications Conference (ACSAC’99), pp. 209–218,
IEEE, 1999.

[36] A. Mayer, A. Wool, and E. Ziskind, “Fang: A firewall analysis engine,” in Pro-
ceeding 2000 IEEE Symposium on Security and Privacy. S&P 2000, pp. 177–187,
IEEE, 2000.

[37] S. Hazelhurst, “Algorithms for analysing firewall and router access lists,” arXiv
preprint cs/0008006, 2000.

[38] E. S. Al-Shaer and H. H. Hamed, “Discovery of policy anomalies in distributed
firewalls,” in IEEE Infocom 2004, vol. 4, pp. 2605–2616, IEEE, 2004.

[39] H. Hamed and E. Al-Shaer, “Taxonomy of conflicts in network security poli-
cies,” IEEE Communications Magazine, vol. 44, pp. 134–141, March 2006.

[40] E. Al-Shaer, H. Hamed, R. Boutaba, and M. Hasan, “Conflict classification and
analysis of distributed firewall policies,” IEEE Journal on Selected Areas in Com-
munications (JSAC), vol. 23, pp. 2069–2084, October 2005.

[41] A. Hari, S. Suri, and G. Parulkar, “Detecting and resolving packet filter con-
flicts,” in Proceedings IEEE INFOCOM 2000. Conference on Computer Communica-
tions. Nineteenth Annual Joint Conference of the IEEE Computer and Communications
Societies, vol. 3, pp. 1203–1212, IEEE, 2000.

[42] D. Monahan, “Research summary: Network security policy manage-
ment tools –tying policies to process, visibility, connectivity, and migra-
tion,” ENTERPRISE MANAGEMENT ASSOCIATES® (EMA) Research Re-
port, https://web.tufin.com/network-security-policy-managementtools-ema-
research 2018.

[43] C. Cunningham and J. Pollard, “The eight business and security benefits of zero
trust,” Forrester Research, November 2017.

[44] J. L. Dietz and H. B. Mulder, Enterprise Ontology: A Human-Centric Approach to
Understanding the Essence of Organisation. Springer Nature, 2020.

[45] M. Suchánek and R. Pergl, “Evolvability evaluation of conceputal-level inheri-
tance implemtation patterns,” in The 11th International Conferences on Pervasive
Patterns and Applications (EMPAT), pp. 1–6, 2019.

114 BIBLIOGRAPHY

[46] G. Haerens, “Using normalized systems to explore the possibility of creating an
evolvable firewall rule base,” in The 13th International Conferences on Pervasive
Patterns and Applications (PATTERNS 2021), pp. 1–10, April 2021.

[47] G. Haerens and H. Mannaert, “Improving firewall evolvability with an iter-
ated local search algorithm,” International Journal on Advances in Security, vol. 14,
no. 1&2, 2021, to be published.

[48] P. M. P. M. Rafael and M. G. C. Resende, Handbook of Heuristics. Springer, 2018.

[49] Z. Michalewicz and D. B. Fogel, How to Solve it: Modern Heuristics. Springer
Science & Business Media, 2013.

[50] E.-G. Talbi, Metaheuristics: from Design to Implementation, vol. 74. John Wiley &
Sons, 2009.

[51] M. Yoon, S. Chen, and Z. Zhang, “Minimizing the maximum firewall rule set
in a network with multiple firewalls,” IEEE Transactions on Computers, vol. 59,
no. 2, pp. 218–230, 2009.

[52] T. D. Cook, D. T. Campbell, and W. Shadish, Experimental and Quasi-Experimental
Designs for Generalized Causal Inference. Houghton Mifflin Boston, MA, 2002.

	FINAL_EDIT___On_the_Evolvability_of_the_TCP_IP_based_Network_Firewall_Rule_Base_V3_0 (4).pdf
	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	The TCP/IP-Based Firewall
	Network Basics
	Firewall Functioning
	Firewall Group Objects
	Relevance of the Firewall in Today's Networks

	Normalized Systems Theory
	Research Problem: the Firewall as Non-Evolvable System
	Research Methodology
	Research Objective and Questions
	Structure of the Dissertation

	Problem Description
	Literature Review and Related Work
	Rule Relationships and Order Sensitivity
	Size of the Problem Space
	Formal Definitions of Rule Base Components
	Combinatorics
	Ports
	Services
	Hosts
	Services on Host
	Clients
	Rules and Rule Base

	Ontological Model of a Firewall Rule Base
	The Ontological Model

	Reverse-Engineering the Implementation Model
	The Fortinet Firewall
	Service Objects
	ServiceGroup Objects
	Address Objects
	AddressGroup Objects
	Rule Objects
	Implementation Model of a Fortinet Firewall

	The Palo Alto Firewall
	Service Objects
	ServiceGroup Objects
	Application Objects
	ApplicationGroup Objects
	Address Objects
	AddressGroup Objects
	Rule Objects
	Implementation Model of a Palo Alto Firewall

	The Check Point Firewall
	Service<Protocol> Objects
	ServiceGroup Objects
	Address Objects
	Group Objects
	Rule Objects
	Implementation Model of a Check Point Firewall

	Overview Implementation Models

	Evolvability Issues Due to the Data Model
	Problem Overview

	Artifact Requirements
	Eliminating Order Sensitivity
	Group Object Naming Conventions
	Minimize the Number of Rules in the Rule Base
	Zero Trust
	Requirements for a Green-Field Artifact
	Requirements for a Brown-Field Artifact
	Requirements Overview

	Green-Field Artifact Creation and Demonstration
	Designing an Evolvable Rule Base
	The Green-Field Artifact
	Green-Field Artifact Demonstration
	Add and Remove a Rule
	Adding a New Service to the Network
	Adding a New Host Offering Existing Services, to the Network
	Adding a New Host Offering New Services, to the Network
	Adding a New Client to the Network
	Removing a Service From the Network
	Removing a Host From the Network
	Removing a Service From a Host
	Removing a Client From the Network
	Summary of the Demonstration

	The Impact of Aggregations
	Aggregation at Host Level
	Aggregation at Service Level

	Brown-Field Artifact Creation and Demonstration
	Brown-Field Artifact Design
	Meta-Heuristic Selection
	Initial Solution and Neighborhood
	Objective Function
	Feasible Solutions
	Move Type
	The Impact of Splitting Service Definitions on the OF
	Split Selection

	Move Strategy
	Perturbation
	Stop Conditions
	Solution Encoding
	Port
	Port Frequency
	Port Frequencies List
	Service
	ServiceList
	Service_DI
	ServiceDIList

	Operations
	PortFrequenciesConstructor
	Service_DI_List_Creator
	Service_Split_Evaluator
	Service_Perturbation

	The Iterated Local Search Algorithm

	Brown-Field Artifact Demonstration
	Firewall Export Pre-Processing
	Step 1: Loading the Export Files
	Step 2: Preparing the Rule History
	Step 3: Preparing the Service History
	Step 4: Replacing the Service Groups in the Rule Base
	Step 5: Applying the One-Service-Per-Rule Design Criterion
	Step 6: Looking for Identical Services
	Step 7: Initial Versioning of the Services

	Adjusting the Rules
	Demonstration Data Sets
	Demonstration Results
	Demonstration Environment
	Demonstration Overview
	Objective Function and the Number of Rules
	Impact of the Algorithm on the Number of Service Definitions
	Evolution of the Objective Function During Algorithm Execution
	Tracking of Rule and Service Definition Changes

	Discussion and Conclusion

	Implications of the Artifact
	Impact on the Ontological and Implementation Model
	Impact of the Filtering Strategies
	Interconnect Filtering Strategy
	Inbound and Outbound Filtering Strategy

	Multiple Firewalls
	The Serial Firewall Filtering Function
	Applying the Rules on Some Firewalls
	Applying the Rules on all Firewalls
	Restricting Inbound Traffic Filtering
	Apply Inbound Traffic Filtering to More Than Two Firewalls

	Software-Defined Network/Firewall
	Implication of the Artifact on Firewall Scaling
	The Firewall Rule Base Analyser and Normalizer System

	Evaluation and Discussion
	The Artifacts
	Green-Field Artifact Limitations
	Big O of the Brown-Field Artifact
	Performance of the Brown-Field Artifact
	Global Optimum
	Brown-Field Artifact Limitations
	Naming of the Services
	Non-Existing Service Definitions
	Destinations and Sources

	The Application to the Environment
	The Usage of Existing Knowledge and Methodologies
	Existing Knowledge Base
	Methodologies
	Experiment Description
	Construct Validity
	Statistical Conclusion Validity
	Internal Validity
	External Validity
	Validity Summary

	The Additions to the Knowledge Base
	Size of the Problem
	The Green-Field Artifact
	The Brown-Field Artifact
	Impact of the Brown-Field Artifact on the Size of the Rule Base
	Measuring the Evolvability of a Firewall
	Firewall Scaling
	Multi-Firewall Design Guidance
	Contribution to NS Theory

	Artifacts as Enterprise Engineering Instruments
	Way of Thinking (WoT)
	Way of Modeling (WoM)
	Way of Working (WoW)
	Way of Supporting (WoS)
	Way of Organizing (WoO)

	Conclusion and Future Work
	Conclusion
	Contributions
	Limitations and Future Research

	NL_Abstract
	Abstract

	Lege pagina

