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Abstract

We introduce the notion of a nonlinear splitting on a fibre bundle as a generalization of an
Ehresmann connection. We present its basic properties and we pay attention to the special
cases of affine, homogeneous and principal nonlinear splittings. We explain where nonlinear
splittings appear in the context of Lagrangian systems and Finsler geometry and we show
their relation to Routh symmetry reduction, submersive second-order differential equations
and unreduction. We define a curvature map for a nonlinear splitting, and we indicate where
this concept appears in the context of nonholonomic systems with affine constraints and
Lagrangian systems of magnetic type.
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1 Introduction

Principal, linear and nonlinear connections on principal, vector, frame and fibre bundles are
among the most indispensable tools of differential geometry. Moreover, they have been applied
to formulate and solve many problems in dynamical systems and mathematical physics. One
may think e.g. of the Levi-Civita connection in Riemannian geometry, of the many distinct linear
and nonlinear connections in Finsler geometry [32], of the principal connections that describe
linear nonholonomic constraints in geometric mechanics [4] or of the connections that appear in
Lagrangian field theories and gauge theories [23].

In this paper we will use the terminology ‘Ehresmann connection’ for a ‘standard’ connection
on a fibre bundle π : M → N . With that we mean a direct complement Hπ of the vertical
distribution V π = KerTπ within TM . It is well-known (see e.g. [17]) that this notion can
be equivalently cast in terms of a horizontal lift, which is in essence a splitting of a certain
short exact sequence of vector bundles. The goal of this paper is to show that the notion of
an Ehresmann connection can be meaningfully extended, if we drop the requirement that the
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splitting is a linear bundle map. This will give rise to the concept that we have termed ‘a
nonlinear splitting’ in this paper. In contrast with an Ehresmann connection, the image of a
non-linear splitting is a submanifold of TM , and no longer a distribution on M .

A nonlinear splitting should not be confused with the concept that is often called a ‘nonlinear
connection’. A nonlinear connection often refers to a (standard) Ehresmann connection, in case
the fibre bundle is a vector bundle, and the adjective ‘nonlinear’ is usually added to distin-
guish Ehresmann connections from linear connections on that vector bundle. For example, the
nonlinear connection that can be associated to a sode (see e.g. [32]) is in fact an Ehresmann
connection on the vector bundle τ : TM → M .

After some preliminaries, we investigate in Section 2 both the similarities and the differences
between nonlinear splittings and Ehresmann connections, at the level of their horizontal pro-
jections and Vilms lifts. As an application, we indicate how nonlinear splittings appear in the
context of nonholonomic systems. With an eye on future applications in Finsler geometry, we
introduce in Section 3 the notion of a homogeneous nonlinear splitting, and we prove necessary
and sufficient conditions for a nonlinear splitting to be either homogeneous, or an Ehresmann
connection.

In Section 4 we consider Lagrangian systems on M , where M is the total manifold of a fibre
bundle over N , and we show that under the appropriate condition of fibre-regularity one may
associate a nonlinear splitting to this Lagrangian system. Under a further symmetry-type con-
dition it can be shown that ‘horizontal’ solutions of the Lagrangian system on M are in fact
related to the solutions of a Lagrangian system on the base manifold N (see Proposition 5). The
corresponding Lagrangian on N is what we call ‘the subduced Lagrangian’, following [28, 29].
We end the section with a discussion on the relation of the proposition to submersive systems
of second-order ordinary differential equations [18, 31].

In the special case that the fibre bundle is a principal bundle, we give a necessary and sufficient
condition for a principal nonlinear splitting to be a principal connection. We show in Section 5
how the results of the previous section fit within the context of reduction of a Lagrangian system
with a symmetry Lie group. We discuss some aspects of Lagrange-Poincaré reduction [6, 27],
Routh reduction [20, 8] and unreduction [14].

In most of the applications where Ehresmann connections are being used, its curvature plays an
important role. We give a definition for the curvature of a nonlinear splitting. To demonstrate
the significance of this definition to future applications, we show in Section 6 where the curvature
of an affine nonlinear splitting appears in the geometric modeling of a Lagrangian system with
extra magnetic forces and of mechanical systems with affine nonholonomic constraints. The
paper ends with an outlook to an application of nonlinear splittings in Finsler geometry.

2 Nonlinear Splittings

Let π : M → N be a fibre bundle. Throughout we will use τ : TM → M and τ̄ : TN → N for
the tangent bundles of M and N , respectively. We will consider the pullback of τ̄ by π:

π∗TN = {(m, vn) ∈ M × TN | π(m) = τ̄(vn)},

and use p1 and p2 for the projections π∗TN → M and π∗TN → TN , respectively. Sections of
this pullback bundle can also be thought of as maps η : M → TN with τ̄ ◦ η = π. In what
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follows we will call such a section ‘a vector field on N along π’ and we will denote the set of
these sections by X (π).

Let µ : TM → π∗TN be the linear bundle map (τ, Tπ), i.e. µ(wm) = (m,Tπ(wm)). With these
ingredients we can write down the short exact sequence

0 V π TM π∗TN 0,
µ

where V π stands for the vertical bundle KerTπ of π. Each of the manifolds in this sequence
is fibred over M . In the following definition, we consider a right splitting of the sequence, but,
importantly, we do not assume it to be linear in the fibre coordinates.

Definition 1. A nonlinear splitting on π : M → N is a map h : π∗TN → TM which is

• smooth on the slit pullback bundle π∗T̊N ,

• fibre-preserving, i.e. τ ◦ h = p1,

• satisfies Tπ ◦ h = p2.

We call H = Imh ⊂ TM the horizontal manifold of h.

In the definition, T̊N stands for the tangent manifold TN from which the zero section has been
removed. This subtle aspect will become important when we consider homogeneous nonlinear
splittings in Section 3.

In what follows we will often use coordinates (xi) on N and coordinates (qa) = (xi, yα) on M that
are adjusted to the fibre bundle structure of π. We will denote the corresponding natural fibre
coordinates on TM by (ua) = (vi, wα). Locally, a nonlinear splitting h can then be expressed as

h(xi, yα, vi) = (xi, yα, vi, hα(x, y, v)).

We will refer to the functions hα as the ‘coefficients of h’.

The coordinates vi also represent the fibre coordinates of the vector bundle τ̄ : TN → N . It is
clear from the coordinate expression that if we would require h to be a linear map between the
two vector bundles π∗TN and TM , the coefficients hα would be linear in the vi-coordinates. In
that case, we would obtain an Ehresmann connection on a fibre bundle (see e.g. [17]). We will
explore this in more detail in the next section, but first we show that much of the apparatus of
Ehresmann connections can be transferred to the current (more general) setting.

The horizontal projection operator of a nonlinear splitting h : π∗TN → TM is the map Ph :
TM → TM,wm 7→ h(m,Tπ(wm)). In local coordinates, we obtain the expression

Ph(x
i, yα, vi, wα) = (xi, yα, vi, hα(x, y, v)).

The vertical projection operator is the map Pv : TM → TM , given by Pv(wm) = wm −
h(m,Tπ(wm)). It is clear that Pv(wm) ∈ V π since Tπ(Pv(wm)) = Tπ(wm) − Tπ(wm) = 0.
Pv is the left (nonlinear) splitting of the short exact sequence. It is easy to see that

Pv(x
i, yα, vi, wα) = (xi, yα, 0, wα − hα(x, y, v)).
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With these operators, we can decompose wm = Ph(wm) + Pv(wm) and we have the properties
Ph ◦ Ph = Ph and Pv ◦ Ph = 0. However,

Pv(Pv(wm)) = Pv(wm) + Pv(0m) and Ph(Pv(wm)) = Ph(0m).

Herein is Ph(0m) = −Pv(0m) = (xi, yα, 0, hα(x, y, 0)). Also, notice that the horizontal and
vertical projection operators of a nonlinear splitting can not be thought of as (1,1)-tensor fields
on M , since h is not a fibrewise linear mapping.
Recall the map µ : TM → π∗TN that appears in the short exact sequence. Tangent vectors
(as elements of TTM) belong to KerTµ if they are of the type Wα∂/∂wα |wm . They can also
be interpreted as the τ -vertical lift (see Section 3 for its definition) of the π-vertical vector
Wα∂/∂yα |m to wm.

Proposition 1. A map Ph : TM → TM is the horizontal projection operator of a nonlinear
splitting if and only if τ ◦ Ph = τ , Tπ ◦ Ph = Tπ and KerTµ ⊂ KerTPh.

Proof. From the first two properties in the statement we see that Ph must be of the type
Ph : (xi, yα, vi, wα) 7→ (xi, yα, vi, hα(x, y, v, w)). The last property means that TPh |KerTµ= 0
or ∂hα/∂wβ = 0.

The map h can be used to lift sections η of the pullback bundle π∗TN to vector fields ηh on M .
In particular, for a vector field X on N (thought of as a ‘basic’ section of π∗TN) its horizontal
lift satisfies

Xh(m) = h(m,X(π(m)).

We may also define the horizontal lift of curves from N to M .

Definition 2. Let h be a nonlinear splitting on π : M → N and let cn(t) be a curve on N , with
cn(0) = n. Its horizontal lift chm to m ∈ Mn is the unique curve in M such that π ◦ chm = cn and
ċhm ∈ H.

When cn(t) is locally given by (xi(t)), the above horizontal lift is the curve chm(t) = (xi(t), yα(t))
that is determined by the first-order initial value problem

ẏα(t) = hα(x(t), y(t), ẋ(t)),

yα(0) = yα0 ,

where (yα0 ) are the fibre coordinates of m.
We next show that a construction known as the ‘Vilms lift of an (Ehresmann) connection’
(see e.g. [33, 14]) can be extended to the current context of nonlinear splittings. Below, σ :
TTM → TTM stands for the canonical involution (see e.g. [12] or [17], where it is called the
‘canonical flip’). In a notation where induced coordinates on TTM are denoted by couples we
may write σ : (qa, ua, Qa, Ua) 7→ (qa, Qa, ua, Ua), where, in comparison with earlier notation,
(qa) = (xi, yα), (ua) = (vi, wα), etc.

Definition 3. Let h be a nonlinear splitting on π : M → N with vertical projection operator
Pv : TM → TM . The unique nonlinear splitting hVilms on Tπ : TM → TN whose vertical
projection operator is

PVilms

v = σ ◦ TPv ◦ σ

is called the Vilms lift of h.
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The coordinate calculation below shows that this object does indeed satisfy the requirements
of a nonlinear splitting. We will denote the natural induced coordinates on TTM by the tuple
(xi, yα, vi, wα, X i, Y α, V i,Wα). Then,

PVilms

v (xi, yα, vi, wα, X i, Y α, V i,Wα)

= σ ◦ TPv(x
i, yα, X i, Y α, vi, wα, V i,Wα)

= σ
(

xi, yα, 0, Y α − hα(x, y,X), vi, wα, 0,

Wα −
∂hα

∂xj
(x, y,X)vj −

∂hα

∂yβ
(x, y,X)wβ −

∂hα

∂vj
(x, y,X)V j

)

=
(

xi, yα, vi, wα, 0, Y α − hα(x, y,X), 0,

Wα −
∂hα

∂xj
(x, y,X)vj −

∂hα

∂yβ
(x, y,X)wβ −

∂hα

∂vj
(x, y,X)V j

)

.

One readily verifies that the map hVilms : (Tπ)∗TN → TTM is then given by

hVilms(xi, yα, vi, wα, X i, V i) =

(xi, yα, vi, wα, X i, hα(x, y,X), V i,
∂hα

∂xj
(x, y,X)vj +

∂hα

∂yβ
(x, y,X)wβ +

∂hα

∂vj
(x, y,X)V j).

We can express this a bit more graphically by making use of vector fields an their lifts. The
complete and vertical lifts of a horizontal lift by a nonlinear splitting are:

h

(

∂

∂xj

)

=
∂

∂xj
+ hα(x, y, ej)

∂

∂yα
,

(

h

(

∂

∂xj

))

C

=
∂

∂xj
+ hα(x, y, ej)

∂

∂yα
+

(

∂hα

∂xk
vk +

∂hα

∂yβ
wβ

) ∣

∣

∣

∣

(x,y,ej)

∂

∂wα
,

(

h

(

∂

∂xj

))

V

=
∂

∂vj
+ hα(x, y, ej)

∂

∂wα
.

The horizontal lifts of the coordinate vector fields ∂
∂xj and ∂

∂vj
on TM by means of the Vilms

nonlinear splitting are:

∂

∂xj

Vilms

=
∂

∂xj
+ hα(x, y, ej)

∂

∂yα
+

(

∂hα

∂xk
vk +

∂hα

∂yβ
wβ

) ∣

∣

∣

∣

(x,y,ej)

∂

∂wα
,

∂

∂vj

Vilms

= hα(x, y, 0)
∂

∂yα
+

∂

∂vj
+

(

∂hα

∂xk
vk +

∂hα

∂yβ
wβ +

∂hα

∂vj

) ∣

∣

∣

∣

(x,y,0)

∂

∂wα
.

We conclude that for a nonlinear splitting
(

h
(

∂
∂xj

))C

=
(

∂
∂xj

C

)

Vilms

but
(

h
(

∂
∂xj

))V

̸=
(

∂
∂xj

V

)

Vilms

.

An application. Mechanical systems with rigid bodies are often subjected to nonholonomic
constraints. These are nonintegrable constraints that depend on the velocities of the system.
They appear, for example, in mechanical systems where wheels are supposed to roll without
slipping, or when the system is prohibited from moving in certain directions (such as the motion
of a skate).
The literature on the case where these nonholonomic constraints are linear in the velocities is
vast. However, many papers (see e.g. [7, 10, 13, 19, 30] for a selection) also discuss nonlinear
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constraints. For simplicity, we consider here affine constraints, as in e.g. [5]. In that case, there
exist configuration coordinates (xi, yα) for the nonholonomic system, such that the constraints
can be written in the form

ẏα +Aα
i (x, y)ẋ

i = Aα
0 (x, y).

The geometric interpretation of such constraints in [5] is as follows: the presence of the coor-
dinates (xi, yα) indicate that the configuration manifold of the mechanical system is the total
space of a fibre bundle π : M → N . The functions Aα

i then represent the local coefficients of an
Ehresmann connection on that bundle. Finally

A0 = Aα
0 (x, y)

∂

∂yα

is a given π-vertical vector field on M .

The point we would like to make is that, in the current set-up, we can interpret the constraints
as the submanifold H of TM that is the image of the nonlinear, but affine, splitting given by

h(xi, yα, vi) = (xi, yα, vi, wα = −Aα
i (x, y)v

i +Aα
0 (x, y)).

It is clear that, in general, when a nonlinear splitting h : π∗TN → TM is an affine map, its
linear part (m, vn) 7→ h(m, vn)− h(m, 0n), or

(xi, yα, vi) 7→ (xi, yα, vi,−Aα
i (x, y)v

i),

is an Ehresmann connection on π : M → N . We will come back to the example of affine
nonholonomic constraints, and the curvature of such an affine nonlinear splitting in Section 6.

3 Homogeneous nonlinear splittings and Ehresmann connections

In this section we discuss conditions for nonlinear splittings to become Ehresmann connections.
We will also deal with a case ‘in between’: that of a homogeneous nonlinear splitting.

Definition 4. A nonlinear splitting h on π : M → N is homogeneous if it is positive homogeneous
of degree 1, that is, if

h(m,λvn) = λh(m, vn), ∀λ ∈ R+.

In terms of the local expression, the condition means that the coefficients hα are 1+-homogeneous
functions, hα(x, y, λv) = λhα(x, y, v). In e.g. [32] one may find Euler’s theorem, which states
that this is equivalent with the property

vi
∂hα

∂vi
= hα.

Because of the nonlinear nature of the splitting h, the procedure by which we define the horizontal
lift of a curve is not a geometric operation in the following sense: the image of any of the
horizontal lifts of a reparametrized curve might not be the same (viewed as a point set) as the
image of the horizontal lift of the curve itself. Homogeneous splittings, however, do exhibit this
geometric property.
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Proposition 2. Let h be a homogeneous splitting on the fibre bundle π : M → N . Then, for any
horizontal lift of a curve cn(t) in N and any positive reparametrization c̃(s) = cn(θ(s)) of cn(t)
there exists a horizontal lift of c̃(s), which has the same image (as a point set) as the horizontal
lift chm(t) of c(t) to m.

Proof. Let m = (yα0 ). The horizontal lift chm(t) = (xi(t), yα(t)) of cn(t) = (xi(t)) can by found
by solving the initial value problem

ẏα(t) = hα(x(t), y(t), ẋ(t)),

yα(0) = yα0 .

We will denote by s0 the parameter value where θ(s0) = 0. We consider the horizontal lift
c̃h(s) = (x̃i(s), ỹα(s)) of c̃(s) = (x̃i(s)) = (xi(θ(s))) that corresponds to the initial value problem

ỹα ′(s) = hα(x̃(s), ỹ(s), x̃′(s)),

ỹα(s0) = yα0 .

Due to the positive-homogeneity of hα we see that

ỹα ′(s) = hα
(

x(θ(s)), y(s), ẋ(θ(s))θ′(s)
)

= θ′(s)hα
(

x(θ(s)), y(θ(s)), ẋ(θ(s))
)

= θ′(s)ẏα(θ(s)),

which means that
(

ỹα(s) − yα(θ(s))
)′

= 0. Since they both coincide at s = s0, we get ỹα(s) =
yα(θ(s)), and the statement follows.

In what follows, we need the Liouville vector field on TM . It can be defined as the map ∆ :
w 7→ (w,w)V, where .V : TM ×M TM → TTM stands for the vertical lift (w1, w2)

V ∈ Tw1
TM ,

with
(w1, w2)

Vf =
d

dt
f(w1 + tw2) |t=0 .

With this, the Liouville vector field becomes in natural coordinates (qa, ua) on TM , ∆ =
ua∂/∂ua.
The vertical lift can be used to identify the set of vertical vector fields on TM with the set X (τ)
of ‘vector fields along τ ’. These are sections of the pullback bundle τ∗TM → TM , and they can
be regarded as maps ζ : TM → TM with the property τ ◦ ζ = τ . We may therefore write them
as ζ = ζa(q, u)∂/∂qa. The corresponding vertical vector fields on TM , ζV : w 7→ (w, ζ(w))V is
then ζV = ζa(q, u)∂/∂ua. In the special case of the so-called canonical vector field T along τ
(the map w 7→ w) its vertical lift is the Liouville vector field ∆.
Consider a (general) nonlinear splitting. Similar to the definition of the Liouville vector field,
we may introduce two vector fields on TM :

∆h : TM → TTM, w 7→ (w,Ph(w))
V and ∆v : TM → TTM, w 7→ (w,Pv(w))

V.

Then ∆ = ∆h +∆v and

∆h = vi
∂

∂vi
+ hα(x, y, v)

∂

∂wα
and ∆v = (wα − hα(x, y, v))

∂

∂wα
.

An other vector field of interest is ∆0(v) = (v, h(0))V, with

∆0 = hα(x, y, 0)
∂

∂wα
.
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Proposition 3. A nonlinear splitting h : π∗TN → TM is homogeneous if and only if one of
the following equivalent characterizations are satisfied:

(1) [∆,∆h] = 0.

(2) The Liouville vector field ∆ ∈ X (TM) on M is tangent to H.

Proof. (1) One easily verifies that

[∆,∆h] =

(

vi
∂hα

∂vi
− hα

)

∂

∂wα
.

As we explained before, we may conclude from the condition vi
∂hα

∂vi
= hα that hα is a 1-

homogeneous function in vi.

(2) When ∆ is tangent to H, then 0 = ∆(wα − hα) = wα − vi
∂hα

∂vi
, whenever wα = hα. We

obtain again that vi
∂hα

∂vi
= hα.

Since ∆v = ∆−∆h, we could also have written [∆,∆v] = 0 or [∆h,∆v] = 0 in the first item of
the Proposition.
We end this section with a few characterizations of when a nonlinear splitting is an Ehresmann
connection, in case the map h is smooth on the whole of π∗TN .

Proposition 4. A smooth nonlinear splitting h : π∗TN → TM is an Ehresmann connection on
π if and only if one of the following equivalent characterizations are satisfied:

(1) [∆,∆h] = 0.

(2) The Liouville vector field ∆ ∈ X (TM) on M is tangent to H.

(3) The Liouville vector field ∆̄ ∈ X (TN) on N satisfies ∆̄Vilms = ∆h.

Proof. The statements (1) and (2) are a corollary of the previous proposition: If a function is of
class C1 and positive-homogeneous of degree 1 in vi, then it is a linear function in vi (see [32]).
(3) Since ∆̄ = vi∂/∂vi, the expression for ∆̄Vilms is

∆̄Vilms = hα(x, y, 0)
∂

∂yα
+ vi

∂

∂vi
+

(

∂hα

∂xk
vk +

∂hα

∂yβ
wβ +

∂hα

∂vj
vj
) ∣

∣

∣

∣

(x,y,0)

∂

∂wα
.

When compared to ∆h we get that hα(x, y, 0) = 0. From this, also
∂hα

∂xk
(x, y, 0) =

∂hα

∂yβ
(x, y, 0) = 0.

With that, the remaining condition becomes
∂hα

∂vj
(x, y, 0)vj = hα(x, y, v).

This shows that hα is a linear function in vi.

We will come back to homogeneous nonlinear splittings and their appearance in Finsler geometry
in Section 7.
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4 Subduced Lagrangians

In what follows we will often consider the tangent bundle τ : TM → M of a differentiable
manifold M . Coordinates (qa) on M induce coordinates (qa, ua) on TM . We refer to e.g. [9, 12]
for the definitions and elementary properties of the next few concepts.

A second-order ordinary differential equations field Γ on M (from now on ‘a sode on M ’, in
short) is a vector field on TM with the property that all its integral curves γ(t) in TM are
(tangent) lifted curves ċ(t) of curves c(t) on M (the so-called base integral curves of Γ). A sode
is locally given by

Γ = ua
∂

∂qa
+ fa ∂

∂ua
,

from which it is clear that its base integral curves c(t) = (qa(t)) satisfy

q̈a = fa(q, q̇). (1)

Our main area of application is in Lagrangian mechanics. The equations of motion are then
given by

d

dt

(

∂L

∂ua

)

−
∂L

∂qa
= 0.

A Lagrangian function L ∈ C∞(TM) is regular when its Hessian with respect to fibre coordinates,

∂2L

∂ua∂ub

considered as a symmetric matrix, is everywhere non-singular. In that case, the Euler-Lagrange
equations can be rewritten in the form (1), which indicates that the solutions are the base
integral curves of a sode ΓL on M . In e.g. [27] it is shown that this so-called Euler-Lagrange
vector field ΓL is a vector field on TM that is completely determined by the fact that it is a
sode and that it satisfies

ΓL(X
V(L))−XC(L) = 0, ∀X ∈ X (M). (2)

Here XC = Xa∂/∂qa + (∂Xb/∂qa)∂/∂ua and XV = Xa∂/∂ua stand, respectively, for the com-
plete lift and vertical lift of a vector field X = Xa∂/∂qa on M .

The goal of this section is to study the basic properties of an important subclass of nonlinear
splittings.

Definition 5. Let L be a regular Lagrangian on the total space M of the fibre bundle π :
M → N . The Lagrangian is fibre-regular when its Hessian with respect to fibre coordinates is
non-degenerate, that is, when

det
∂2L

∂wα∂wβ
̸= 0.

We may also give an intrinsic definition, in terms of the Legendre transformation Leg : TM →
T ∗M, (qa, ua) → (qa, pa = ∂L/∂ua). If we consider the Legendre transformation from the vertical
bundle of π on its dual bundle then, one can see that L is fibre-regular if this transformation is
a local diffeomorphism.
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When the Lagrangian L is fibre-regular, the Implicit Function Theorem guarantees the local
existence of a map h : π∗TN → TM , as the solution of

∂L

∂wα
◦ h = 0. (3)

In the context of Lagrangian systems we will mainly work with local nonlinear splittings.

Definition 6. The nonlinear splitting induced by the fibre-regular Lagrangian L is the map
h : π∗TN → TM determined by the relation (3).

Any vector field Y on M can be τ -vertically lifted to a vector field Y V on TM . In case Y is
π-vertical (i.e. in case it satisfies Tπ ◦ Y = 0) its vertical lift Y V is a combination of the basis
vector fields ∂/∂wα. The defining relation of the splitting can then also be written as

Y V(L) ◦ h = 0, ∀π-vertical Y .

The following natural question arises: When are horizontal curves solutions of the Euler-
Lagrange equations of L? Or, formulated differently: When do solutions, with horizontal initial
velocity remain horizontal?
We recall first an observation about a submanifold S of a manifold Q, with inclusion ι : S → Q.
The following statements can be found in e.g. [22]. A vector field X on Q is tangent to a
submanifold S if and only if X(f) vanishes on S, for every function f on Q that vanishes on S.
If a vector field X is tangent to S, then there exist a unique vector field Y on S that is ι-related
to X. If S is closed the integral curves of X that start in S remain in S. When S is not closed,
the result only holds locally. Indeed, if x(t) is the integral curve of X through ι(y0), with y0 ∈ S,
then the Picard-Lindelöf theorem ensures that it must be of the form (ι◦y)(t), where y(t) is the
integral curve of Y through y0. In the next Proposition, we will apply these statements to the
case where Q = TM , S = H and X = ΓL is the Euler-Lagrange sode of L. For the functions f
we take the functions ∂L/∂wα that determine the submanifold H. A version of the next result
can also be found in [28], but in a somewhat different context.

Proposition 5. Let h be the nonlinear splitting of a fibre-regular Lagrangian L. Then, the
Euler-Lagrange field ΓL of L is tangent to H if and only if

Y C(L) ◦ h = 0, (4)

for any vector field Y on M that is π-vertical. Under the assumption that (4) is satisfied, the
function L̄ := L ◦ h determines a Lagrangian on N . If it is regular, the base integral curves of
its Euler-Lagrange field Γ̄L̄ on N are the projections of horizontal base integral curves of ΓL.

Proof. In view of equation (2), the condition (4) is equivalent with Γ(Y V(L)) ◦ h = 0, for all
π-vertical Y . This shows that Γ is tangent to H = Imh.
We may therefore conclude that the integral curve γ(t) of Γ (as a curve in TM) that starts at
an element h(m0, v0) of H remains in H. Since Γ is a sode we know that each integral curve is a
lifted curve. For this reason, the integral curves that start at a horizontal element are (tangent)
lifts of horizontal lifts, and γ(t) = ċhm0

(t).
Under the condition (4) the function L̄ = L ◦h on π∗TN (in principle depending on coordinates
(xi, yα, vi)) can in fact be thought of as a function on TN . Indeed, we get that

∂L̄

∂yα
=

∂L

∂yα
◦ h+

(

∂L

∂wβ
◦ h

)

∂hβ

∂yα
.

10



The first term vanishes because of the condition (4) and the second because of the definition of
the submanifold (in both cases using Y = ∂/∂yα). This shows, that the composition L ◦ h does
not depend on the coordinates yα and that it therefore restricts to a function on TN .

For later reference we list all first- and second-order derivatives of L̄:

∂L̄

∂xi
=

∂L

∂xi
◦ h+

(

∂L

∂wα
◦ h

)

∂hα

∂xi
=

∂L

∂xi
◦ h,

∂L̄

∂vi
=

∂L

∂vi
◦ h+

(

∂L

∂wα
◦ h

)

∂hα

∂vi
=

∂L

∂vi
◦ h,

∂2L̄

∂vi∂xj
=

∂2L

∂vi∂xj
◦ h+

(

∂2L

∂vi∂wα
◦ h

)

∂hα

∂xj
,

∂2L̄

∂vi∂vj
=

∂2L

∂vi∂vj
◦ h+

(

∂2L

∂vi∂wα
◦ h

)

∂hα

∂vj
.

Finally, we remark that

0 =
∂2L̄

∂vi∂yα
=

∂2L

∂vi∂yα
◦ h+

(

∂2L

∂vi∂wβ
◦ h

)

∂hβ

∂yα
.

Consider now a base integral curve of Γ of the type chm0
(t) = (xi(t), yα(t)). Then ẏα = hα and

ÿα =
∂hα

∂xj
ẋj +

∂hα

∂vj
ẍj +

∂hα

∂yβ
ẏβ .

Let n0 = π(m0) and cn0
(t) = π(cm0

(t)) = (xi(t)). We verify that cn0
is a base integral curve of

the Euler-Lagrange sode Γ̄ of L̄:

d

dt

(

∂L̄

∂vi

)

−
∂L̄

∂xi
=

∂2L̄

∂vi∂xj
ẋj +

∂2L̄

∂vi∂vj
ẍj −

∂L̄

∂xi

=

(

∂2L

∂vi∂xj
◦ h+

(

∂2∂L

∂vi∂wα
◦ h

)

∂hα

∂xj

)

ẋj

+

(

∂2L

∂vi∂vj
◦ h+

(

∂2L

∂vi∂wα
◦ h

)

∂hα

∂vj

)

ẍj −
∂L1

∂xi
◦ h

=

(

∂2L

∂vi∂xj
ẋj +

∂2L

∂vi∂vj
ẍj +

∂2L

∂vi∂yα
ẏα −

∂L

∂xi

)

◦ h

+

(

∂2L

∂vi∂wα
◦ h

)(

∂hα

∂xj
ẋj +

∂hα

∂vj
ẍj +

∂hα

∂yβ
ẏβ
)

=

(

∂2L

∂vi∂xj
ẋj +

∂2L

∂vi∂vj
ẍj +

∂2L

∂vi∂yα
ẏα −

∂L

∂xi

)

◦ h+

(

∂2L

∂wα∂vi
◦ h

)

ÿα.

=

(

d

dt

(

∂L

∂vi

)

−
∂L

∂xi

)

◦ h = 0.

Definition 7. Assume that a nonlinear splitting h on π : M → N is induced by the fibre-regular
Lagrangian L. If the condition (4) of Proposition 5 is satisfied, we call the Lagrangian L̄ on N
given by L ◦ h the subduced Lagrangian of L through π.
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In what follows we will always assume that the subduced Lagrangian is regular.

Remark. A smooth map between manifolds π : M → N is called a submersion if its tangent
map is surjective at any point. The following property can be found in [18]: Assume that
π : M → N is a surjective submersion and Γ is a sode on M . If Γ is Tπ-related to some vector
field Γ̄ on N (that is, if T (Tπ) ◦ Γ = Γ̄ ◦ Tπ), then Γ̄ is also a sode (on N). For this reason,
a sode Γ is called submersive if there exists a surjective submersion π : M → N such that Γ
is Tπ-related to a vector field Γ̄ on N . Submersive sodes have been extensively investigated in
the literature, see for instance [18, 31]. If such a surjective submersion exists, π can locally be
expressed as π(xi, yα) = (xi) and the base integral curves of Γ satisfy

ẍi = f i(x, ẋ)

ÿα = fα(x, y, ẋ, ẏ).

The first set of equations constitutes a decoupled subsystem of Γ with fewer variables. This
subsystem represents the sode Γ̄ and, therefore, each base integral curve of Γ projects through
π to a base integral curve of Γ̄. Although Proposition 5 seemingly says something similar, it is,
in the current generality, not true that the Euler-Lagrange field of L is submersive. The reason
is that Proposition 5 only makes a statement about the projection of horizontal integral curves,
and not about the projection of base integral curves in general. In [28, 29], π : M → N is called a
Lagrangian submersion if a subduced Lagrangian exists, even though the two Lagrangian sodes
do not submerse in the sense of [18]. In the next sections, we will present two situations where
we can relate properties of nonlinear splittings to submersive sodes.

5 Principal splittings and symmetry reduction of Lagrangian
systems

A nonlinear splitting, induced by a Lagrangian on a fibre bundle does not necessarily give rise
to a subduced Lagrangian on the base manifold of the bundle. We will see now that, in the
presence of symmetries, the existence of such a subduced function can be guaranteed. The next
definition can be thought of as a generalization of a principal connection on a principal bundle.

Let G be a connected Lie group with Lie algebra g. Assume that the manifold M comes equipped
with a free and proper Lie group action Φ : G×M → M . Then M is the total space of a principal
G-bundle π : M → N = M/G.

The pullback bundle π∗T (M/G) also carries a natural G-action Φ̄ : G×π∗T (M/G) → π∗T (M/G),
with Φ̄g(m, vn) = (Φg(m), vn). Moreover, the maps TΦg induce a G-action on TM . We will
denote the corresponding principal fibre bundle with πTM : TM → (TM)/G.

The vertical space of π : M → M/G, V π = KerTπ ⊂ TM , can be identified with M × g if we
make use of the trivialization (m, ξ) 7→ ξ̃α(m). Herein is ξ̃ ∈ X (M) the infinitesimal generator
of a ξ ∈ g. The action TΦg of TM is then in agreement with the action g · (m, ξ) = (Φgm,Adgξ)
on M × g. For this reason, all manifolds in the short exact sequence

0 M × g TM π∗T (M/G) 0,
µ

have a G-action and the sequence itself is G-equivariant. We will be interested in equivariant
nonlinear splittings of this sequence.
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Definition 8. A nonlinear splitting h : π∗T (M/G) → TM on a principal bundle π : M → N =
M/G is principal if it is equivariant:

h(Φ̄g(m, vn)) = TΦg(h(m, vn)).

The (nonlinear) map ω : TM → g, defined by the requirement

Pv(wm) = ω̃(wm)(m)

is the left nonlinear splitting of a principal nonlinear splitting h.

It is easy to see that the equivariance property of h translates to the properties

Pv ◦ TΦg = TΦg ◦ Pv and ω ◦ TΦg = Adg ◦ ω

for Pv and ω.
If, as before, π : (xi, yα) → (xi) are local adapted coordinates and {Eα} is a basis of g we can
decompose the fundamental vector fields Ẽα as

Ẽα = Kα
β (x, y)

∂

∂yβ
.

These vector fields form a frame for the set of π-vertical vector fields on M . A local coordinate
expression for ω is then

ω(xi, yα, vi, wα) = ωβEβ = (K−1)βγ (w
γ − hγ)Eβ .

Since a principal connection is most frequently represented by its left splitting, we give a char-
acterization of when a nonlinear splitting is a connection, in terms of ω.

Proposition 6. A smooth principal nonlinear splitting is a principal connection on π if and
only if i∆h

dω = 0.

Proof. In the above statement we consider ω = ωαEα as a g-valued function on TM . Its exterior
derivative is then the g-valued one-form on TM with the property that, for ζ = ζa∂/∂qa +
Zb∂/∂ub ∈ X (TM),

dω(ζ) =

(

ζa
∂ωα

∂qa
+ Zb∂ω

α

∂ub

)

Eα.

For ∆h we have ζa = 0, Zi = vi and Zα = hα. Together with the above expression for ωα we
obtain

dω(∆h) = (K−1)αγ

(

−vi
∂hγ

∂vi
+ hγ

)

Eα.

Therefore, the property dω(∆h) = 0 returns the condition vi
∂hα

∂vi
= hα that we have already

discussed in the proof of Proposition 4.

We have assumed that the Lie group G is connected. It is well-known that in that case a function
f on M is invariant under the action Φ if and only if ξ̃(f) = 0, ∀ξ ∈ g. Likewise, a function F
on TM is invariant under the induced G-action TΦg on TM if and only if ξ̃C(F ) = 0. There
exist analogous characterizations for tensor fields and vector fields. The next proposition gives
an infinitesimal characterization of a principal nonlinear splitting.
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Proposition 7. A nonlinear splitting h on a principal bundle is principal if and only if ∆h is
an invariant vector field on TM , i.e. [ξ̃C,∆h] = 0, ∀ξ ∈ g.

Proof. We show first that ∆h is invariant for a principal splitting:

∆h(TΦg(wm)) = (TΦg(wm), Ph(TΦg(wm)))V = (TΦg(wm), TΦg(Ph(wm)))V

= TTΦg

(

(wm, Ph(wm))V
)

= TTΦg(∆h(wm)).

The before last equality follows essentially because TΦg is a linear bundle map H : TM →
TM, (qa, ua) 7→ (qb, Hb

a(q)u
a): If we set wm = (qa, ua) and Ph(wm) = Xm = (qa, Xa), then

(H(wm), H(Xm))V = Hb
aX

a ∂

∂ub

∣

∣

∣

∣

(qb,Hb
au

a)

= TH

(

Xa ∂

∂ua

∣

∣

∣

∣

(qa,ua)

)

= TH
(

(wm, Xm)V
)

.

If we run the same steps in the opposite direction we obtain from the invariance of ∆h that
Ph(TΦg(wm)) = TΦg(Ph(wm)).

Since [XC,∆] = 0 for any vector field X on M , the property of the above proposition could also
be written as [ξ̃C,∆v] = 0. For later reference we express it in coordinates: If ξ̃ = ξγKβ

γ ∂/∂yβ ,
then the condition becomes

vi
∂Kα

γ

∂xi
(x, y) + hβ(x, y, v)

∂Kα
γ

∂yβ
(x, y)−Kβ

γ (x, y)
∂hα

∂yβ
(x, y, v) = 0, ∀(x, y, v). (5)

Our main example comes again from Lagrangian mechanics. Assume that a Lagrangian L is
invariant under the induced action of the Lie group G on TM . If the Lie group is connected,
this can be expressed as

ξ̃C(L) = 0, ∀ξ ∈ g. (6)

We recall from [25, 26] that the map JL : TM → g
∗ defined as

⟨JL(wm), ξ⟩ = ξ̃V(L)(wm)

is called the momentum map of L. For each wm ∈ TM we may define the restriction JL |wm

g → g∗, ξ 7→ JL(wm + ξ̃(m)). In [20, 21] the Lagrangian is said to be G-regular if JL |wm is a
diffeomorphism for each wm ∈ TM . Since then

det
(

ẼV

αẼ
V

β (L)
)

̸= 0,

this notion coincides, in this case, with that of a fibre-regular Lagrangian from Section 4. The
corresponding nonlinear splitting induced by L is then globally defined.
It is well known that J is equivariant with respect to the action of G on TM and the coadjoint
action of G on g

∗ given by
⟨ξ, ad∗g µ⟩ = ⟨adg ξ, µ⟩.

For a fixed µ ∈ g
∗, the level set Nµ of momentum µ is invariant under the isotropy subgroup

Gµ = {g ∈ G | ad∗g µ = µ} (see also [26, 20, 8]).
In the current situation of interest, the nonlinear splitting that is induced by L is determined by
the relation ξ̃V(L) ◦ h = 0. The corresponding submanifold H = Imh can therefore be regarded
as the level set of zero momentum, µ = 0. Since then Gµ = G, H is invariant under the whole
group action, and as a consequence, the corresponding h is a principal nonlinear splitting.
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Proposition 8. Let π : M → M/G be a principal bundle and L be a G-regular invariant
Lagrangian on M and h its principal splitting. Then, the Euler-Lagrange field of L is tangent
to the image of h and horizontal solutions (with zero momentum) can be projected to solutions
of the Euler-Lagrange equations of L̄ = L ◦ h.

Proof. This follows immediately from Proposition 5, since the presence of symmetries (6) ensures
that condition (4) is satisfied on the whole of TM .

The subduced Lagrangian L̄ (a function on T (M/G)) has an interesting interpretation in the
current situation. When the Lagrangian L is G-invariant it can be identified with the ‘reduced
Lagrangian’ l. This is a function on (TM)/G that can be implicitly determined from L = l◦πTM ,
where πTM : TM → (TM)/G is the principal bundle one may associate with the G-action on
TM .

In several papers (e.g. [6, 27, 11]) it has been shown that the Euler-Lagrange equations of L can
be reduced to the so-called Lagrange-Poincaré equations of l. These equations are essentially
associated to a vector field on (TM)/G. The point we would like to make is that (TM)/G is
(only) a Lie algebroid (the so-called Atiyah algebroid, see e.g. [11]), and (TM)/G can not be
identified with the tangent manifold T (M/G). Since l is a function on (TM)/G, there is no
obvious relation between the Euler-Lagrange field of the subduced Lagrangian L̄ (a vector field
on T (M/G)) and the Lagrange-Poincaré field of l (a vector field on (TM)/G).

Besides Lagrange-Poincaré reduction, there exist, however, a second symmetry reduction method:
Routh reduction. From the Euler-Lagrange equations of L we know that

ΓL(Ẽ
V

α(L)) = 0.

This shows that the Euler-Lagrange vector field Γ of L is tangent to any level set ẼV

α(L) = µα,
where µα can now be any arbitrary constants. Routh reduction takes optimal advantage of this
observation. For the details we refer the reader to e.g. [8, 20, 26]. Here it is enough to know
that the reduced equations are completely determined by the so-called Routhian function on Nµ

(the level set of momentum, corresponding to µ ∈ g
∗),

Rµ = (L− µαv
α) |Nµ .

This is a Gµ-invariant function on Nµ and, for this reason, it can be identified with a function
on Nµ/Gµ. In this generality, it has been shown that solutions of the Euler-Lagrange equations
of L that remain on a specific level set Nµ, can be seen to be solutions of ‘Routh equations’ on
Nµ/Gµ. In [8] these Routh equations have been computed to be of the form

d

dt

(

∂Rµ

∂vi

)

−
∂Rµ

∂xi
= −µαR

α
ijv

j − ΛA
i

∂Rµ

∂θA
.

(Here (xi, vi, θA) are coordinates on Nµ/Gµ, where θA stand for coordinates on G/Gµ. The
precise meaning of the terms in the righthand side is not of importance to us here.)

In the case of current interest, where µ = 0, we immediately see that R0 = L̄ is our subduced
Lagrangian, and that it can be thought of as a function on N0/G0 = T (M/G). From Gµ = G
it also follows that no θA-coordinates appear in the above Routh equations. They therefore
simplify, indeed, to the Euler-Lagrange equations of L̄: We conclude that at zero momentum
the Routh equations show a variational nature.
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We continue our investigation of principal nonlinear splittings. Recall that in Section 4 we have
seen that the sodes ΓL of a Lagrangian L on M and Γ̄L̄ of its subduced Lagrangian L̄ on N are
not submersive in the sense of [18]. We will show now that, in the case of a principal splitting
on π : M → M/G, it is possible to start with a sode Γ̄ on N = M/G, and to construct a
sode Γ on M that is submersive. In case of Ehresmann connections, this procedure is called
‘unreduction’ in [14].
We have already mentioned that (TM)/G should not be confused with the tangent manifold
T (M/G). In fact, T (M/G) is the quotient of TM by the action of TG (which is also a Lie group):
The principal bundle that corresponds to the action Ψ = TΦ : TG× TM → TM has projection
Tπ : TM → T (M/G). We show now that the Vilms lift of a principal nonlinear splitting on
π : M → M/G is a principal splitting on the TG-principal bundle Tπ : TM → T (M/G).

Proposition 9. The Vilms nonlinear splitting is a principal splitting on Tπ : TM → T (M/G).

Proof. Let vg ∈ TG and ξ = g−1vg ∈ g. The statement will follow if we can prove that, for each
Ψvg : TM → TM,wm 7→ TΦ(vg, wm), the Vilms vertical projection operator has the property
PVilms

v ◦ T (Ψvg) = T (Ψvg) ◦ P
Vilms

v .
Remark first that a version of the Leibniz rule says that TΦ : TG× TM → TM satisfies

Ψvg(wm) = TΦ(vg, wm) = T (Φg)(wm + ξ̃(m)).

One may find a version of this formula in e.g. Theorem 3.5 of [24] (if one takes TM for the Lie
algebroid A). If we write dξ : wm 7→ wm + ξ̃(m), then Ψvg = T (Φg) ◦ dξ. One easily verifies
that for any map F : M → M , σ ◦ T (TF ) = T (TF ) ◦ σ (see also [17]). With this, and with
T (Φg) ◦ Pv = Pv ◦ T (Φg), we get

PVilms

v ◦T (Ψvg) = σ◦TPv◦σ◦T (T (Φg))◦Tdξ = σ◦T (Pv◦T (Φg))◦σ◦Tdξ = T (T (Φg))◦P
Vilms

v ◦Tdξ.

The result will follow if we can show that PVilms

v ◦ Tdξ = Tdξ ◦ P
Vilms

v . In local coordinates, we
may write

dξ(x
i, yα, vi, wα) = (xi, yα, vi, wα + ξγKα

γ ).

On the one hand we have that (PVilms

v ◦ Tdξ)(x
i, yα, vi, wα, X i, Y α, V i,Wα) =

(

xi, yα, vi, wα + ξγKα
γ , 0, Y

α − hα, 0,Wα + ξγ
(

∂Kα
γ

∂xi
Xi +

∂Kα
γ

∂yβ
Y β

)

−
∂hα

∂xi
vi −

∂hα

∂yβ
(wβ + ξγKβ

γ )−
∂hα

∂vi
V i

)

.

On the other hand, (Tdξ ◦ PVilms

v )(xi, yα, vi, wα, X i, Y α, V i,Wα) =

(

xi, yα, vi, wα + ξγKα
γ , 0, Y

α − hα, 0,Wα −
∂hα

∂xi
vi −

∂hα

∂yβ
wβ −

∂hα

∂vi
V i + ξγ

∂Kα
γ

∂yβ
(Y β − hβ)

)

.

The difference is, when written in full,

ξγ
(

Xi
∂Kα

γ

∂xi
(x, y) + hβ(x, y,X)

∂Kα
γ

∂yβ
(x, y)−Kβ

γ (x, y)
∂hα

∂yβ
(x, y,X)

)

.

The factor between brackets vanishes, in view of the condition (5) that expresses the invariance
of the vector field ∆h.
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In this specific situation, we may also define a principal nonlinear splitting on the G-principal
bundle TM → (TM)/G.

Definition 9. The vertical lift splitting hV of a principal nonlinear splitting h is the G-principal
splitting on the principal bundle π̄ : TM → TM/G, whose splitting map is τ∗ω = ω ◦ Tτ .

The corresponding splitting is principal because, for X ∈ TvTM ,

ω(Tτ(T (TΦg)X)) = ω(TΦgTτ(X)) = Adgω(Tτ(X)).

We will denote its corresponding vertical projection operator by PV

v : TTM → TTM . Let
Γ0 = ua∂/∂qa + F a∂/∂va be any sode on M . Then the vector field

Ξ = PV

v (Γ0) = (K−1)βγ (w
γ − hγ)ẼC

β = (wγ − hγ)

(

∂

∂yδ
+ (K−1)βγK̇

δ
β

∂

∂wδ

)

is clearly independent of the specific F a, and therefore of the choice of Γ0. Moreover it is tangent
to H and it satisfies TTπ ◦ Ξ = 0.

Proposition 10. Let h : M → M/G be a principal splitting on the principal fibre bundle
π : M → M/G and let Γ̄ be a sode on M/G. Then

Γ = Γ̄Vilms + Ξ

is a sode on M which is tangent to H. Furthermore, Γ is submersive and it submerses to Γ̄
through π.

Proof. Assume that Γ̄ has the local expression Γ̄ = vi
∂

∂xi
+ f i(x, v)

∂

∂vi
. Then, the Vilms-lift of

Γ̄ can, in vector field notation, be locally expressed as

Γ̄Vilms = vi
∂

∂xi
+ hα

∂

∂yα
+ f i ∂

∂vi
+

(

∂hα

∂xj
vj +

∂hα

∂yβ
wβ +

∂hα

∂vj
f j

)

∂

∂wα
.

This vector field is tangent to H (the submanifold given by wα − hα = 0). However, it is not
a sode on M , since we have terms hα ∂

∂yα
instead of wα ∂

∂yα
. By adding Ξ to Γ̄Vilms, we get the

sode

Γ = vi
∂

∂xi
+ wα ∂

∂yα
+ f i ∂

∂vi
+

(

∂hα

∂xj
vj +

∂hα

∂yβ
wβ +

∂hα

∂vj
f j + (wγ − hγ)(K−1)βγK̇

α
β

)

∂

∂wα
.

Since Ξ is also tangent to H, so is Γ. From the coordinate expression we see that TTπ◦Γ = Γ̄◦Tπ,
which means that Γ submerses to Γ̄ through π.

A sode Γ can be characterized as a vector field on TM that satisfies S(Γ) = ∆, where S =
dqa ⊗ ∂/∂ua is the vertical endomorphism on M . It is remarkable that Γ̄Vilms and Ξ are two
vector fields on M that satisfy

S(Ξ) = ∆v and S(Γ̄Vilms) = ∆h.
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6 Curvature

In this section we define the curvature map of a nonlinear splitting, by analogy of the curvature
tensor of an Ehresmann connection.

Definition 10. Let h : π∗TN → TM be a nonlinear splitting on π : M → N . The curvature
map is the operation R : X (M)×X (M) → X (M), given by

R(Z,W ) = Pv [Ph(Z), Ph(W )] .

The above expression is clearly skew in Z and W and since Tπ ◦ Pv = 0 the result is always a
π-vertical vector field on M . For vector fields X and Y on N we can compute that

R(Xh, Y h) = Pv

[

Xh, Y h
]

=
[

Xh, Y h
]

− Ph

[

Xh, Y h
]

=
[

Xh, Y h
]

− Ph([X,Y ]h) =
[

Xh, Y h
]

− [X,Y ]h .

The first equality of the second line follows because Tπ
([

Xh, Y h
]

− [X,Y ]h
)

= [Tπ(Xh), Tπ(Y h)]−
[X,Y ] = 0. Therefore

[

Xh, Y h
]

= [X,Y ]h + V (for a π-vertical vector field V on M) and thus
Ph

[

Xh, Y h
]

= Ph([X,Y ]h) = [X,Y ]h.

For a π-vertical vector field V on M , it also holds that R(Xh + V,W ) = R(Xh,W ). For this
reason, the curvature map is essentially determined by the association R̄ : X (N) × X (N) →
X (M), given by

R̄ : (X,Y ) 7→ R(Xh, Y h) =
[

Xh, Y h
]

− [X,Y ]h .

We remark that the curvature is not a tensor field. But, we can give an example where we can
associate a linear map with it, even though h is not an Ehresmann connection.

Consider an affine map h : π∗TN → TM, (xi, yα, vi) 7→ (xi, yα, vi, wα = −Aα
i v

i + Aα
0 ). In

that case, its linear part, H : π∗TN → TM, (xi, yα, vi) 7→ (xi, yα, vi, wα = −Aα
i v

i) defines an
Ehresmann connection. For a vector field X = Xi∂/∂xi on N , we will denote the horizontal lift
by this Ehresmann connection by

XH = XiHi ∈ X (M), with Hi =
∂

∂xi
−Aα

i

∂

∂yα
.

Coming back to the affine splitting, its horizontal lift is

Xh = XH +A0.

With that, we may compute the curvature map as

R̄(X,Y ) = [XiHi, Y
jHj ] + [XiHi, A0] + [A0, Y

jHj ]− [X,Y ]iHi −A0.

The first and the fourth term together represent the curvature of the Ehresmann connection: If
we denote [Hi, Hj ] = Bα

ij∂/∂y
α, then these terms together give XiY jBα

ij∂/∂y
α.

If we set [Hj , A0] = Aα
0j∂/∂y

α, with

Aα
0j = Hj(A

α
0 ) +A0(A

α
j ),
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we may compute that

R̄(X,Y ) =
(

XiY jBα
ij +XiAα

0i − Y jAα
0j +Aα

0

) ∂

∂yα
.

From this expression, it is clear that, although the curvature map is not tensorial, in this case
is exhibits an affine behaviour. We will use this to define a linear map, in two steps.
First, we may define the value of the curvature map at a ’point’, that is, give a meaning to
R̄m(un, vn) with un, vn ∈ TnN , and m ∈ M with π(m) = n:

R̄m(un, vn) := R̄(X,Y )(m) ∈ TmM,

with X,Y being arbitrary vector fields on N satisfying X(n) = un and Y (n) = vn.
In the second step, we define a map R̄0 : X (τ̄) → X (τ), as follows. Let ζ̄ : TN → TN be a
vector field along τ̄ : TN → N . Then R̄0(ζ) : TM → TM is the vector field along τ , defined by

R̄0(ζ)(wm) := R̄m(ζ(Tπ(wm)), Tπ(wm))− R̄m(0n, Tπ(wm)).

With this, we get for wm = (xi, yα, vi, wα), Tπ(wm) = (xi, vi) and ζ̄ = ζ̄i(x, v)∂/∂xi,

R̄0(ζ) = ζ̄i
(

vjBα
ij +Aα

0i

) ∂

∂yα
.

We give two occurrences where the above tensorial object R̄0 makes its appearance.
Example 1. Nonholonomic systems with affine constraints. The equations of motion
of a nonholonomic system are given by the Lagrange-d’Alembert equations. If L ∈ C∞(TM)
is the Lagrangian of the system, then (in the terminology of this paper) we may identify the
‘constrained Lagrangian’ Lc with the composition L ◦ Ph, where Ph is the horizontal projector
of the affine nonlinear splitting. It is shown in [5] that the Lagrange-d’Alembert equations can
then be written as











ẏα +Aα
i ẋ

i = Aα
0 ,

d

dt

(

∂Lc

∂vi

)

−
∂Lc

∂xi
+Aα

i

∂Lc

∂yα
=
(

−Bα
ij ẋ

j −Aα
0i

) ∂L

∂wα
.

In the case where the constraints are linear (i.e. when Aα
0 = 0) the interpretation of the right-

hand side is clear: it represents a force term that is determined by the curvature of the Ehresmann
connection. From the above considerations it is clear that, also in the case of affine constraints,
we can now interpret the right-hand side as a curvature: that of the affine nonlinear splitting.
Example 2. Magnetic Lagrangian systems. We come back to the case of a principal bundle
π : M → M/G, but with an invariant Lagrangian of the following type

L = T − V +A. (7)

Herein is T the kinetic energy that one can associate with an invariant Riemannian metric.
We make the further assumption that the vertical part of the metric (that is, its restriction to
the fibres of π) comes from a bi-invariant metric on G (or, equivalently an Ad-invariant inner
product on g). The potential V is supposed to be an invariant function on M (or: a function
on M/G) and the vector potential A (representing magnetic forces) is the linear function that
one can associate to an invariant 1-form on M .
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In order to proceed we need to recall the notion of the mechanical (Ehresmann) connection.
Since the Hessian of L w.r.t. fibre coordinates is positive definite, one can define the horizontal
subspace of TM as the orthogonal complement of the vertical space w.r.t. this Hessian. The
corresponding principal connection on π : M → M/G is called the mechanical connection (for
further details, see [27]).
Let xi be coordinates on M/G and let’s now denote the horizontal lift w.r.t. the mechanical
connection of the corresponding coordinate vector fields by Hi. These are invariant vector fields
on M . If we also fix a basis {Eα} of g, we may consider the invariant vector fields Êα on M ,
generated by these elements, given by

Êα : (x, g) 7→ ˜(adg Eα)(x, g) = TΦg

(

Ẽα(x, e)
)

.

Then, the set {Hi, Êα} constitutes a frame field of M , consisting of only G-invariant vector
fields. For later reference, we write down the Lie brackets of these vector fields:

[Hi, Hj ] = Kα
ijÊα, [Hi, Êα] = Υβ

iαÊβ , [Êα, Êβ ] = Cγ
αβÊγ

Each of these brackets has a geometric interpretation: Kα
ij are the coefficients of the curvature

of the mechanical connection, Cβ
αγ are the structure constants of g and Υβ

iα are the coefficients
of an adjoint linear connection (see [6]).
We will also use their corresponding quasi-velocities (vi,wα). More precisely, this means that,
for any tangent vector wm in TmM , vi(m) and w

α(m) are the components of wm with respect
to the basis {Xi(m), Êα(m)} of TmM . As a matter of fact v

i = vi.
The Lagrangian in (7) has then the following form:

L =
1

2
gijv

ivj +
1

2
kαβw

α
w
β − V +Aiv

i +Aαw
α, (8)

where, as a result of the assumed invariance conditions, kαβ are constants, satisfying

kαδC
δ
βγ + kβδC

δ
αγ = 0,

and gij , Ai and Aα are functions on M that are independent of yα (i.e. they are functions on
M/G). For this reason, we can also interpret L as the reduced Lagrangian l on (TM)/G.
Since g is assumed to be positive-definite, the Lagrangian L is fibre-regular. It therefore generates
a non-linear splitting, in the sense of Definition 6. Since ÊV

α(L) = kαβw
β +Aα, the components

of the nonlinear splitting h, induced by (8), can be readily calculated in quasi-velocities to be

w
α = h

α = −kαβAβ ,

where kαβ denotes the matrix inverse of kαβ. This means that the horizontal lift of the nonlinear
splitting h is in fact an affine map whose vector part can be related to the horizontal lift of the
mechanical connection:

(

Xi ∂

∂xi

)h

= XiHi − kαβAβÊα = XiHi +A0

We may again compute that

R̄(X,Y ) =

(

XiY jKα
ij −Xikαδ

∂Aδ

∂xi
−XikγδAδΥ

α
iγ

+Y jkαδ
∂Aδ

∂xf
+ Y jkγδAδΥ

α
jγ + kαδAδ

)

Êα.
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and
R̄0(ζ) = ζi

(

vjKα
ij − kαδ

∂Aδ

∂xi
− kγδAδΥ

α
iγ

)

Êα.

We can relate the curvature map of the induced nonlinear splitting to the submersiveness of the
underlying sode.

Proposition 11. Let L be an invariant Lagrangian of the type (7) and let ΓL denote its Euler-
Lagrange field. If R̄0 vanishes, ΓL is submersive through π to an Euler-Lagrange sode Γ̄L̄ on
M/G.

Proof. Since L is invariant its Euler-Lagrange equations can be reduced to the Lagrange-Poincaré
equations of l. These can be written in quasi-velocities as

d

dt

(

∂l

∂vi

)

−
∂l

∂xi
= (−Ka

ikv
k +Υa

ibw
b)

∂l

∂wa
,

d

dt

(

∂l

∂wa

)

= (Υb
iav

i + Cb
acw

c)
∂l

∂wb
,

(see e.g. [27]). In the case of a magnetic Lagrangian (8), we get

d

dt

(

gijv
j +Ai

)

−
1

2

∂gjk
∂xi

vjvk +
∂V

∂xi
−

∂Ak

∂xi
vk −

∂Aα

∂xi
w
α =

(

−Kα
ijv

j +Υβ
iαw

β
)

(kβγw
γ +Aα) ,

d

dt
(kαγw

γ +Aα) =
(

Υβ
iαv

i + Cβ
αγw

γ
)

(kβγw
γ +Aβ) .

One should interpret these equations as the coupled differential equations that determine an
initial value problem in the unknown curve (xi(t), ẋi(t),wα(t)) of (TM)/G. In case that the
curvature R̄0 vanishes, however, we get that

−Kα
ijv

jkαγ +Υα
iγAα +

∂Aγ

∂xi
= 0.

Since moreover kβγΥ
β
iαw

βwγ = 0 (see e.g. paragraph 6.1 in [27]), the first set of the Lagrange-
Poincaré equations is independent of the variables w

α and therefore constitute a subsystem on
its own. This means that ΓL is submersive. The base integral curves of the corresponding sode
Γ̄ on M/G are solutions of the differential equations

d

dt

(

gijv
j +Ai

)

−
1

2

∂gjk
∂xi

vjvk +
∂V

∂xi
−

∂Ak

∂xi
vk = 0.

These are the Euler-Lagrange equations of the Lagrangian L̄ = 1
2gijv

ivj−V +Aiv
i on M/G.

If we compare this situation to the more general one that we had discussed in Proposition 5, we
see that now, regardless whether the curve is horizontal or not, we have the property that base
integral curves of ΓL project to base integral curves of Γ̄L̄.
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7 Outlook

In the current paper we have discussed fibre-regular Lagrangians L and their nonlinear splittings.
It is of interest to consider, roughly speaking, the special case where the Lagrangian is the energy
of a Finsler function [3]. A function F on TM is a Finsler function when it is smooth on T̊M ,
positive, positive homogeneous and has the property that the Hessian of its energy function
E = 1

2F
2 with respect to fibre coordinates is a positive-definite matrix everywhere. As a

consequence, any submatrix has non-vanishing determinant. Therefore, if π : M → N is a given
fibre bundle, E is always fibre regular. For this reason, we may consider the nonlinear splitting
of E.
Proposition 12. If the Lagrangian function L is a 2+-homogeneous fibre-regular function on
TM , then the induced nonlinear splitting is homogeneous.

Proof. The homogeneity of the Lagrangian can be expressed as ∆(L) = 2L, where ∆ is the
Liouville vector field on M . Since, for each X ∈ X (M), [∆, XV] = −XV, it is easy to see that
∆(XV(L)) = XV(L), from which we may conclude that XV(L) is a 1+-homogenous function on
TM . As a consequence, for a π-vertical vector field Y on M , both
Y V(L)(x, y, λv, λh(x, y, v)) = λY V(L)(x, y, v, h(x, y, v)) = 0 and Y V(L)(x, y, λv, h(x, y, λv)) = 0.

The first item expresses the 1+-homogeneity of Y V(L), and the second the definition of the
induced nonlinear splitting h. Because of the uniqueness in the Implicit Function Theorem, we
may conclude that λhα(x, y, v) = hα(x, y, λv).

The energy function E = 1
2F

2 of a Finsler function F is such a 2+-homogeneous regular La-
grangian. It is well-known that its Euler-Lagrange sode ΓE is a spray. The Finsler function F
itself is a singular Lagrangian, and all ‘projectively related sprays’ of the type ΓP = ΓE − 2P∆
(with P a 1+-homogeneous function on TM) satisfy its Euler-Lagrange equations. The geomet-
ric interpretation of this property is that the base integral curves of ΓE are the geodesics of the
Finsler function that are parametrized by arc length, while those of ΓP can be considered to be
reparametrizations.
Under the assumption that the further condition (4) is satisfied, the vector field ΓE is tangent
to H (Proposition 5). From Proposition 3 we know that the homogeneous nonlinear splitting
induced by E has also the property that ∆ is tangent to H. For this reason, also any projectively
equivalent spray ΓP shares this property. Moreover, since h is homogeneous, the subduced
Lagrangian Ē of E will be a 2+-homogeneous function. It would be of interest to know when it
represents a Finsler metric.
For homogeneous connections, we also know that there exist a horizontal lift of a reparametrized
curve that remains a solution (Proposition 2). From all this, we may conclude that the statement
in Proposition 5 is ‘geometric’, in the sense that it does not depend on the specific chosen
parametrization of a geodesic. In a next contribution [15], we will investigate these aspects in
more detail, both at the level of Finsler manifolds and Minkowski (vector) spaces. We will relate
our results on subduced Finsler functions to the notion of a Finsler submersion, as it is called
in [2, 16], and apply it to the case of Finsler geometry on homogeneous spaces.
Acknowledgements. We are grateful to the referees for their valuable comments on the
preprint version of this paper.
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