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Abstract 

We analyzed the frequency of intermediate alleles (IAs)  in the ATXN1, ATXN2 and HTT genes 

in several  neurodegenerative diseases. 

The study included 1,126 Alzheimer disease (AD), 440 frontotemporal dementia (FTD)  and 

610 Parkinson's disease (PD) patients. In all cohorts, we genotyped ATXN1 and ATXN2 CAG 

repeats. Additionally, in  the FTD cohort we determined the number of HTT CAG-repeats. 

The frequency of  HTT IAs was higher in FTD patients (6.9%) vs controls (2.9%) and in the 

C9orf72 expansion non carriers  (7.2%) vs. controls (2.9%), although the difference was non-

significant after correction for multiple testing. Compared to controls, progressive non-fluent 

aphasia (PNFA) groups showed a significantly higher frequency of HTT IAs ( 13.6% vs 2.9% 

controls). For the ATXN2 gene,  we observed an IAs increased frequency in AD cases  (AD 

4.1% vs controls 1.8%) and in the behavioural FTD (bvFTD) group (4.8% vs 1.8%). For the 

ATXN1 gene we found a significant increase of IAs in PNFA patients (18.6%)  vs controls 

(6.7%).  

In conclusion, our work suggests that the HTT and ATXN1 IAS may contribute to PNFA 

pathogenesis and point to a link between  ATXN2 IAS and AD.   
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1. Introduction 

Frontotemporal dementia (FTD) is a group of cognitive disorders caused  by the degeneration in 

the frontal and temporal lobes, with clinical and pathological heterogeneous manifestations. 

Based on behavioral and language manifestations FTD is subdivided in behavioural FTD 

(bvFTD) and progressive non-fluent aphasia (PNFA) or fluent progressive aphasia (semantic 

dementia, SD). FTD is frequently familial, up to 43% of the cases according to some studies, 

with 10-27% showing an  autosomal dominant inheritance (Rohrer, 2009 ). FTD is genetically 

heterogeneous, and FTD-causative mutations have been identified in several genes including 

C9orf72, GRN, MAPT and TBK1 (Van Mossevelde et al., 2018). Some of the FTD-related 

mutations have also been identified in amyotrophic lateral sclerosis (ALS), suggesting a genetic 

overlap between the two disorders. In addition, other genetic factors would act as modifiers of 

the disease in FTD and motor neuron disease (MND) (van Blitterswijk et al., 2014).  A 

pathogenic expansion  in C9orf72 is the most common genetic cause of FTD and ALS, 

accounting for 29% of familial FTD cases (Van Mossevelde et al., 2018). The clinical 

phenotype of the C9orf72 expansion is very heterogeneous even within the same family, with 

the bvFTD subtype as the most common clinical presentation, although FTD-MND, MND and 

PNFA are also frequent (Simón-Sánchez et al., 2012). Moreover, C9orf72 nucleotide expansion 

has also been found in patients with clinical diagnosis of  Alzheimer's (AD), Parkinson ́s (PD) 

and Huntington's  (HD) disease, among others (Ahmed et al., 2016). 

Spinocerebellar ataxia type 1 (SCA1), Spinocerebellar ataxia type 2 (SCA2) and HD are 

autosomal dominant progressive neurodegenerative diseases, caused by the presence of an 

expanded CAG-repeat (polyglutamine, polyQ) in the ATXN1, ATXN2 and HTT genes, 

respectively. Some of the PolyQ expansions lie in an intermediate range between normal and 

pathological alleles. These intermediate alleles (IAs) are unstable and prone to increase their 

length to a pathological range in the offspring. The IAs CAG-repeats are in the range 27-35 for 

HTT, 27-33 in the ATXN2, and 33-38 in the ATXN1.  In the last years, several studies have 

reported the potential effect of IAs in several neurodegenerative diseases. For instance, our 

group found that IAs in HTT might have a role in the pathogenesis of AD (Menéndez-González 

et al., 2019).  In addition, IAs in ATXN1 could act as a risk factor for ALS, mainly among 

among C9orf72 expansion carriers (Lattante, 2018). The presence of IAs in the ATXN2 gene has 

been associated with an increased risk of developing ALS (Conforti et al., 2012, Elden, 2010, 

Lee et al., 2011, Sproviero et al., 2017),  but no significant association was found between ALS 

and IAs in HTT (Lee et al., 2011, Ramos et al., 2012). The frequency of IAs in ATXN2 did not 

differ between FTD patients and healthy controls (Ross et al., 2011, van Blitterswijk et al., 

2014),  but these ATXN2 alleles could act as modifiers of the FTD phenotype among carriers 

and non-carriers of the C9orf72 expansion (Lattante et al., 2014, Rubino et al., 2019). The 

intermediate C9orf72 expansion has been associated with a risk effect in familial and sporadic 
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FTD (Benussi et al., 2014, van der Zee et al., 2013). Together, these findings  supported the idea 

that IAs might  play an outstanding role in neurodegenerative disorders, but this hypothesis  

needs to be further explored. 

The aim of this study was to determine the frequency of IAs in ATXN1, ATXN2 and HTT in 

patients with AD, PD and FTD (both with or without C9orf72 expansions). 
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2. Materials and methods. 

2.1 Patients and controls. 

2.1-Study Design 
 
This was a multicentre study: patients were recruited from twelve centers  of four countries. The 

anthropometric and clinical data was retrospectively collected from the medical records, and the 

DNA from all the participants was stored in the Hospital Biobanks.  We analysed three cohorts 

of patients clinically diagnosed with AD, FTD and PD. In all them, we genotyped the CAG 

repeats in the ATXN1 and ATXN2 genes. We also determined the HTT CAG-genotype in  the 

FTD cohort. A total of 150 of the Spanish FTD patients and all the AD and PD patients were 

previously HTT genotyped and reported (Menéndez-González et al, 2019).  

2.2-Patients  and medical records  

All the patients were Caucasian. Our FTD cohort consisted of 440 unrelated patients (293 from 

Spain, 101 from Italy, 26 from Belgium and 20 from Portugal) diagnosed with FTD (n=250), 

semantic dementia (n=32), progressive non-fluent aphasia (n=59), or FTD-MND (n=42), 

according to the behavioral and language variants criteria (Rascovsky et al., 2011; Gorno-

Tempini et al., 2011) (Supplementary Table 1) . In 57 patients, FTD was classified as 

unspecified.  A total of 175 patients were carriers of the C9orf72 expansion. In all C9orf72 non-

carriers,  we excluded the presence of the  pathogenic variants in the GRN and MAPT genes.  

Family history of dementia was present in 88.3% of the C9orf72 expansion carriers and  in 

43.9% of the expansion non-carriers.  

We also analyzed 1,126 AD patients clinically diagnosed according to the NIH-AA criteria 

(McKhann et al., 2011)  and 610 PD patients diagnosed according to the MDS criteria (Postuma 

et al., 2015). 

All the patients were evaluated by neurologists from Hospital Universitario Central de Asturias 

(Spain); Hospital Santa Creu i Sant Pau (Spain);  Centre for Neurodegenerative Disorders- 

University of Brescia (Brescia, Italy); Center for Neuroscience and Cell Biology, University of 

Coimbra (Coimbra,  Portugal); Center for Molecular Neurology, VIB- University of Antwerp 

(Antwerp, Belgium), Regional Neurogenetic Centre, ASP CZ, Lamezia Terme (Catanzaro, 

Italy); Fondazione IRCCS Ca’ Granda, Ospedale Policlinico (Milan, Italy).; RCCS Istituto 

Centro San Giovanni di Dio- Fatebenefratelli (Brescia, Italy), University of Florence Azienda 

Ospedaliero (Florence,Italy), Hospital Clínic (Barcelona, Spain); Hospital Gregorio Marañón 

(Madrid, Spain); IRCCS Istituto Fondazione IRCCS Istituto Neurologico Carlo Besta,  (Brescia, 

Italy), and  University Hospital Mutua de Terrassa, (Terrassa, Barcelona, Spain). 
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The control group was a cohort (n=509) of Spanish unrelated Caucasian individuals without 

symptoms of  neurodegenerative disease. They were elderly subjects who agreed to participate 

and were  recruited through the Health Community Service of the region of Asturias. 

2.2 Genetic analysis 

Genomic DNA was isolated from peripheral blood following standard procedures. The HTT, 

ATXN1 and ATXN2 CAG-repeat length were determined by polymerase chain reaction (PCR) 

with fluorescent-labeled primers, followed by capillary electrophoresis in an ABI 3130X 

automated DNA sequencer and the Gene Mapper version 4.0 software (Applied Biosystems). 

As a quality control of the genotyping method we sequenced several samples with different 

CAG-repeat alleles. 

C9orf72 expansion 

The C9orf72 genetic status was determined by a triple repeat primed polymerase chain reaction 

(TP-PCR) as reported (DeJesus-Hernández et al., 2011, Gijselinck et al., 2012, Renton et al., 

2011). The FTD patients were assessed for the presence of the C9orf72 expansion. All the 

C9orf72 positive subjects had more than 30 repeats.  

2.3 Statistical analyses 

The Chi-squared and Fisher’s tests with Bonferroni's corrections for multiple testing were used 

to compare the frequency of ATXN1, ATXN2 and HTT intermediate alleles between patients and 

controls. For the Bonferroni correction, a p value ≤0.05 was considered significant. In order to 

compare the distribution of the CAG-repeats between the different groups, we used the Kruskal-

Wallis test to correct for samples that did not follow a normal distribution, with the Dunn's post-

hoc test when necessary. The parametric Student's t-test was used to determine the correlation 

between IAs and the age of onset. 

The statistical analyses were performed with SPSS (version 17) statistical packages. 

 

2.4 Standard protocol approvals, registrations and patient consents 

All the patients and controls gave their informed consent to participate in the study, approved by 

the Ethical Committees of the participating centers. 
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3. Results 

In Table 1 we show the main values in the patients and controls cohorts, as well as the clinical 

presentation in the FTD patients. In all the groups the most common HTT alleles had 17 and 18 

CAG-repeats. In reference to the IAs,  the longest was a 34 repeat and the most frequent was the 

27 CAG-repeat (supplementary Figure 1). For ATXN2 and ATXN1 , the most prevalent alleles 

had  22  and 29-30 CAG repeats, respectively  (supplementary Figure 2 and Figure 3 ). The 

frequency of IAs in HTT, ATXN1 and ATXN2 in the controls  was close to the reported in other 

European populations (Gardiner et al, 2019 )  

We did not find significant differences in the distribution of the normal HTT, ATXN1 and 

ATXN2 alleles between the different groups of patients and controls (Kruskal-Wallis test). For 

the IAs no difference in the HTT, ATXN1 and ATXN2 allele distribution was observed, likely 

due to the small number of patients carrying IAs (data not shown). 

 

Table 1. Main demographic and clinical data in the studied cohorts.  

Group N  Male (%) Age at examination 
(controls) / Age at onset 

(patients) 
mean±SD 

Age range 
(min-max) 

Controls 509 234 (46) 71.14±6.42 49-90 

 

 FTD 440 241 (54.8.) 61.42±9.90 29-85 

bvFTD 

PNFA 

SD 

FTD-MND 

Unspecified 

250 
59 
32 
42 
57 

149(59.6) 
24(40.7) 
16(50) 

28(66.7) 
24(42.1) 

60.15±9.70 
66.21±8.14 
63.08±9.21 
59.32±10.35 
62.21±11.04 

29-85 
48-80 
48-82 
33-82 
37-83 

 

FTD  C9orf72 non-carrier  

All C9- 265 143(54) 63.48±9.43 33-85 

bvFTD 

PNFA 

SD 

FTD-MND 

Unspecified 

141 
48 
27 
10 
39  

84(59) 
18(37) 
13(50)  
8(80) 

17(43)  

61.83±8.89 
68.05±7.23 
63.40±9.07 
62.90±13.61 
64.11±11.18 

37-85 
52-80 
48-82 
33-82 
37-83 
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FTD C9orf72  carrier  

All C9+ 175 98(56)  57.86±9.71 29-79 

bvFTD 

PNFA 

SD 

FTD-MND 

Unspecified 

109 
11 
5 

32 
18 

62(56) 
6(54) 
3(60) 
20(62) 
7(39%)  

 

 57.53±10.37    
 57.90±5.86 
 61.40±10.85 
 58.04±8.87 
 58.18±9.88 

29-79 
48-67 
50-74 
39-73 
41-75 

AD 1126 337(30)  74.32±9.67 20-96 

PD 610 315(52)  59.85±13.6 25-87 

 

FTD- frontotemporal dementia; bvFTD behavioural frontotemporal dementia; PNFA- progressive non fluent aphasia; SD- 

semantic dementia; FTD-MND- frontotemporal dementia and motoneuron disease;FTD unspecified - Frontotemporal dementia 

witht no specified phenotype;  SD- standard deviation 

 

Table 2 summarizes the frequency of intermediate HTT alleles in the different groups. In the 

FTD cohort 6.8% of patients were IA carriers, compared to 2.9% among the controls.  An 

increased frequency of IAs  was also observed in the non-carriers of  C9orf72 expansion (7.2% 

vs. 2.9% in controls). Among the clinical subgroups  bvFTD and PNFA showed a difference in 

the frequency of HTT IAs (bvFTD 6.4% vs 2.9%; PNFA  13.6% vs 2.9%). However, only the 

association between PNFA and HTT IAs remained statistically significant after correction for 

multiple testing (p=0.032).  

All the PNFA patients with HTT IAs were negative for the C9orf72 expansion, while in the 

bvFTD group we found a total of 16 IAs carriers and 8 (50%) were C9orf72  non-carriers 

(Supplementary Table 2)  
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Table 2. Frequencies of  HTT  intermediate alleles. 

Group 
Carriers of 

HTT  IAs 

p-value 

Chi-squared 

p-value 

Fisher 
Bonferroni 

Controls 15 (2.9%)     

FTD 30(6.8%) p=0.008  p=0.377 

FTD  C9orf72  
carriers 

11 (6.3%) p=0.08  p=1 

FTD C9orf72  non 

carriers 
19 (7.2%) 

p=0.011 
 

 p=0.591 

bvFTD 16 (6.4%) p=0.04  p=1 

PNFA 8 (13.6%)  p=0.001 p=0.032 

SD 1 (3.1%)  p=1 p=1 

FTD-MND 3 (7.1%)  p=0.151 p=1 

FTD unspecified 2 (3.5%)  p=1 p=1 

 post hoc Bonferroni correction was applied for the global number of tests 

FTD- frontotemporal dementia; bvFTD behavioural frontotemporal dementia; PNFA- progressive non fluent aphasia; SD- 

semantic dementia; FTD-MND- frontotemporal dementia and motoneuron disease;FTD unspecified - Frontotemporal dementia 

witht no specified phenotype 

 

In reference to the ATXN2 gene, we observed an increased frequency of intermediate alleles 

(≥27 repeats) in the AD group compared to the controls (4.1% vs 1.8%). Among the clinical 

subgroups, bvFTD showed a higher frequency of ATXN2 IAs (bvFTD 4.8% vs 2.9% ). After 

correction for multiple testing no significant difference was observed, likely due to an 

insufficient number of individuals in the two clinical groups (Table 3, supplementary table 3 ).   

Because alleles in the 29-33 range have been associated with the risk of developing ALS we 

determined the frequency of ≥ 29 CAG repeats in AD,  FTD and PD.  No significant association 

was observed but there was an increased frequency of IAs ≥29 repeats in the AD and FTD 

groups compared to controls  (AD: 0.80% vs 0.42%,FTD: 0.90% vs 0.42%) (data not shown) . 
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Table 3. Frequencies of  ATXN2  intermediate alleles in the study cohorts. 

Group 
Carriers of ATXN2  

IAs 

p-value 

Chi-squared 

p-value 

Fisher 

Bonferro

ni 

Controls 9 (1.8%)    

FTD 17(3.9%) p=0.08  p=1 

FTD  C9orf72 
carriers 

6(3.4%) 
 

 

 
p=0.230 p=1 

FTD C9orf72 non 

carriers 
11 (4.2%) p=0.08  p=1 

bvFTD 12 (4.8%) p=0.03  p=1 

PNFA 2(3.4%)  p= 0.615 p=1 

SD 0    

FTD-MND 0    

FTD unspecified 3 (5.3%)  p=0.111 p=1 

AD 46 (4.1%) p=0.024  p=0.86 

PD 13(2.1%) p=0.823  p=1 

Post hoc Bonferroni correction was applied for the global number of tests. 

FTD- frontotemporal dementia; bvFTD behavioural frontotemporal dementia; PNFA- progressive non fluent aphasia; SD- 

semantic dementia; FTD-MND- frontotemporal dementia and motoneuron disease; FTD unspecified - Frontotemporal dementia 

witht no specified phenotype; AD-Alzheimer disease; PD-Parkinson disease. 

 

In reference to the ATXN1, we considered 33 CAG repeats as the cut-off between normal and 

intermediate alleles. We found a significantly increased frequency in PNFA compared to  

controls (18.6% vs 6.7%; p=0.05) (Table 4 , Supplementary Table 4 ).  
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Table 4. Frequencies of ATXN1 intermediate alleles.  

Group 
Carriers of 

ATXN1  IAs 

p-value 

Chi-

squared 

p-value 

Fisher 
Bonferroni 

Controls 34 (6.7%)      

FTD 35 (8%) p=0.527  p=1  

FTD  C9orf72 

carriers 
13(7.4%) p=0.862  p=1  

FTD C9orf72  non 

carriers 
22(8.3%) p=0.498   p=1 

bvFTD 14(5.6%) p=0.680  p=1 

PNFA 11(18.6%)  p=0.004 p=0.05 

SD 2(6.3%)  p=1 p=1 

FTD-MND 5(11.9%)  p=0.207 p=1 

Unspecified 3(5.3%)  p=0.788 p=1 

AD 81 (7.2%) p=0.791   p=1 

PD 58(9.5%) p=0.108  p=1  

post hoc Bonferroni correction was applied for the global number of tests 

FTD- frontotemporal dementia; bvFTD behavioural frontotemporal dementia; PNFA- progressive non fluent aphasia; SD- 

semantic dementia; FTD-MND- frontotemporal dementia and motoneuron disease;FTD unspecified - Frontotemporal dementia 

witht no specified phenotype 

 

Finally, we did not find differences in the mean onset-age between carriers and non-carriers of 

HTT, ATXN2 and ATXN1 intermediate alleles  in the different studied cohorts (Supplementary 

Table 5). 
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4-Discussion  

We had previously reported a significantly higher frequency of HTT IAs among AD patients 

compared to healthy controls. Therefore, the HTT gene might play a role in the pathogenesis of 

AD (Menéndez-González et al, 2019). However, no significant difference between FTD patients 

and controls was observed, although we found a higher frequency of HTT IAs  in  FTD patients. 

The lack of significant association could be explained by the limited size of the FTD cohort. 

In the present study, we increased the FTD sample size and examined the frequency of 

intermediate alleles at the HTT, ATXN1, ATXN2 genes. We included 175 C9orf72 expansion 

carriers and 265 non expansion carriers. In addition, we determined the frequencies of ATXN2 

and ATXN1 IAs in AD and PD cohorts.  

Concerning to HTT,  we found an non-significantly increased frequency of IAs in the FTD 

group, particularly in the the C9orf72  non-carriers. According to the clinical subgroups only  

PNFA showed  a significant difference of HTT IAs compared to controls (p=0.032). However, 

in the bvFTD group, we observed a non-significantly increased frequency of ATXN2 IAs. 

Rubino et al. found a similar result in Italian population. For the ATXN1, we also observed a 

significantly  increased frequency of IAs in the PNFA group (p=0.05).  In this clinical group, all 

the HTT IAs carriers and most of the ATXN1 IAs carriers (7/8, 88%) were negative for the 

C9orf72 expansion. 

Previous studies evaluated the role of the CAG-repeat in several neurodegenerative and 

psychiatric disorders. A larger study based in the European Huntington's Disease Registry 

showed that elderly carriers of HTT IAs  would have more chorea and faster cognitive decline 

than controls (Cubo et al., 2016).  Also, a population based study found that carriers of HTT IAs  

could have a higher risk for apathy and suicidal ideation (Killoran et al., 2013), while an U-

shaped relation  was found between the number of repeats and the risk of suffering depression 

(Gardiner et al., 2017). Several studies also suggested a significant association between ATXN2 

IAs and ALS, and concluded that repeats in the 29-33 range were a strong risk factor for 

developing ALS and could also act as a phenotypic modifier (Chiò et al., 2015, Ramos et al., 

2012). To our knowledge our study is the first describing an association between IAs in HTT  

and ATXN1 genes and the PNFA.   

In addition, we reported an increased frequency of the ATXN2 IAs  in  the AD cohort,  that was 

non-significant after correction for multiple testing but pointed to a pathogenic link between 

ATXN2 and AD.  

Huntington's disease and Spinocerebral Ataxia type 2 are neurodegenerative disorders linked to 

polyglutamine expansions and course with progressive motor symptoms, psychiatric 

disturbances, and cognitive decline. The polyglutamine domains of the proteins act as critical 

regulators of key cellular processes such as transcriptional regulation, mitochondrial energy 

production and autophagy (Ashkenazi et al., 2017,  Hannan, 2018, Lee et al., 2011). These 
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pathways have been associated with aging and several age-related disorders, including AD 

(Caldeira et al., 2013, Gardner, Boles, 2011). Interestingly, SCA2 patients showed brain  

amyloid-beta alternative transcript splicing patterns that resembled those observed in AD (Li et 

al., 2016).  

A recent study reported the association of the ATXN1 CAG-repeat and the different clinical 

features in AD, such as memory, attention and atrophy of the medial temporal lobes (Gardiner 

et al., 2019).  In our AD cohort,  an association of the ATXN1 repeats with AD  risk, age at onset 

or the ApoE genotype was not observed.  

Although our patients did not have neuropathological confirmation it is well known that all 

C9orf72 cases are TDP-43 proteinopathies. It is also known that most of the sporadic SDs are 

also TDP-43 proteinopathies, while other subtypes of FTLD can be either Tau or TDP-43 

proteinopathies (Josephs, 2011). Taking this facts into account our results suggested that IAs in 

the ATXN1, ATXN2 and HTT genes could be associated with Tau proteinopathies. Interestingly, 

it has been proposed that HD is also a tauopathy (Gratuze et al., 2016): first, the mutant HTT 

protein alters tau splicing, phosphorylation, oligomerization and subcellular localization (Blum 

et al., 2015, Fernández-Nogales et al., 2016); second, patients with HD (in particular those with 

a young-onset) presented inclusions of aggregated tau within various structures of the brain 

(Fernández-Nogales et al., 2014, Vuono et al., 2015); third, the MAPT H2 haplotype influences 

the cognitive function in HD patients (Vuono et al., 2015). In Figure 1, we illustrate the  

putative pathways by which mutant HTT (mHTT) might induce tauopathy. 

Our results pointed to a link between IAs and tauopathies, but a more general role in 

neurodegeneration cannot be excluded. In fact, ATXN1 IAs have been associated with the risk of 

developing ALS, mainly among C9orf72  expansion carriers (Lattante et al, 2018). It might be  

of upmost importance to know whether IAs in HTT, ATXN2 and ATXN1 contribute to 

neurodegeneration. To address this issue, neuropathological and biochemical studies are needed 

to check whether polyQ deposits are present in the brain of IAs.  

Finally, the genetic architecture of FTD and AD is complex and many genetic variants can 

modulate disease pathogenesis in different ways. These variants, including the number of CAG 

repeats, might have a synergistic effect in the disease onset and progression and also associate 

with the clinical phenotype. Our results also support the hypothesis that there are common 

pathways for a cluster of neurodegenerative diseases linked by tau dysfunction. Our study has 

several limitations, mainly the fact that the diagnosis of cases was not supported by 

neuropathological markers to confirm the diagnosis. Also, the retrospective and multicentre 

design might affect the genetic association results, and the sample size for some of the clinical 

subtypes of FTD was small. Therefore, our conclusions about these clinical groups should be 

taken with caution.  
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Figure´s footnotes and title  

Supplementary Figure 1 

Footnote- (A) Distribution of HTT CAG repeats in patients and controls. (B) 

Distribution of HTT intermediate alleles. 

Supplementary Figure 2  

Footnote : A) Distribution of ATXN2 CAG repeats in patients and controls .(B) 

Distribution of ATXN2 intermediate alleles.   

Supplementary Figure 3  

Footnote : (A) Distribution of ATXN1 CAG repeats in patients and controls .(B) 

Distribution of ATXN1 intermediate alleles.   

Figure 1  

Footnote  Schematic representation of the putative pathways by which mHTT induces 

tauopathy. Schematic recapitulation of the putative mechanisms underlying tau pathology in 

Huntington’s disease according to data collected in human, mice and in in vitro settings. mHtt 

can interfere with a number of different cellular functions and therefore impact the role of 

various proteins. Its interaction with the tau splicing factor SRSF6 may cause an imbalance 

between tau isoforms (4R ≥ 3R). In the presence of mHTT, a significant decreased level of 

PP2B (calcineurin) is detected within cells, promoting tau hyperphosphorylation (p-tau). Direct 

(to be confirmed) or indirect (through a common binding partner such as microtubules) 

interaction of mHtt with tau could also result in tau phosphorylation. These various mechanisms 

are likely to act concomitantly to induce tau pathology. Reproduced with permission from  

Gratuze et al., 2016. 
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