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Abstract

The precise control of skyrmionics and magnonics in magnetic materials is key to the
development of novel spin-based technology and information transport applications.
Essentially, the inherent stability of magnetic skyrmions (provided by their topological
charge) together with their extremely small size (down to a few nanometers) and the
ultralow threshold current necessary to move them in nanostructures are the main
advantages of skyrmionics. Not least, magnonics offers lower power consumption
compared to electronics and the excitation of high frequency (sub-100 nm wavelength)
magnonsmakes it possible for the creation of nanometric devices for ultrafast information
transport. Even though extensive research has been carried out in recent years, the
precise manipulation of skyrmions and spin waves (magnons) in nanostructures is not
fully mastered and needs to be addressed before making functional skyrmionic and
magnonic devices. In this thesis, we reveal multiple alternatives for the manipulation
of skyrmions and spin-waves in different materials, such as bulk chiral magnets,
heterochiral structures,magnet-supperconductor hybrids and two-dimentionalmagnetic
materials. We make use of a multiscale model to numerically simulate the magnetic
states at each considered material, from micromagnetic to atomistic control. We first
explore the different nucleation mechanisms, activation energy, and the time evolution
of the skyrmion formation in chiral magnetic films, crucial for the realization of
skyrmion-based devices. We show that the skyrmion lattice is formed from the conical
phase progressively, most probably by the formation of chiral bobbres, followed by the
cylindrical growth of individual skyrmions from the film surface. That reflects a rod-like
(one-dimensional) nucleation of the skyrmion phase, with an activation barrier of several
electronvolts per skyrmion for the case of MnSi (Manganese monosilicide). In addition,
we reveal the interesting blinking (creation-annihilation) behavior of skyrmions close
to the phase boundary between the conical and skyrmion phases, where we recall
that such switching between topologically distinct states has been proposed as a bit
operation for information storage. Next, we discuss the motion of ferromagnetic and
antiferromagnetic skyrmions in heterochiral magnets. We report the characteristic
deflection of ferromagnetic skyrmions when moving across a heterochiral interface,
where the extent of such deflection is tuned by the applied spin-polarized current
and the magnitude of Dzyaloshinskii-Moriya interaction. Following, we show that the
antiferromagnetic skyrmion achieves much higher velocities than its ferromagnetic
counterpart, yet experiences far stronger confinement in nanoengineered heterochiral
tracks, which reinforces antiferromagnetic skyrmions as a favorable choice for skyrmion-
based devices. After that, we study the interesting coupling of magnetic skyrmions
and superconducting vortices in magnet-superconductor heterostructures. We perform
numerical simulations, based on experimental observations, to demonstrate that the stray



field of magnetic skyrmions can nucleate antivortices in an adjacent superconducting
film, giving rise to a hybrid topological object, the skyrmion-vortex pair, which harbor
promising features for skyrmionics and quantum computing applications. We then
explore the manipulation of a single skyrmion-vortex pair when currents are applied
into both superconducting and magnetic parts of the heterostructure, which is of
importance for the facilitated skyrmion guidance in racetrack applications. Afterwards,
we make use of the high tunability of magnetic parameters in two-dimensional magnetic
materials to reveal the rich phase diagram of exotic magnetic configurations in magnetic
monolayers with suppressed nearest-neighbour exchange, where we show that several
unique cycloidal, checkerboard, row-wise and spin-ice states are stabilized by the
competition between the second-nearest-neighbor exchange, Dzyaloshinskii-Moriya,
and dipolar interactions. Additionally, we show the coexistence of ferromagnetic and
antiferromagnetic spin-cycloids, as well as novel types of skyrmions and chiral domain
walls. Finally, in the last part of the thesis, we present the spin wave properties in the
two-dimensional magnetic materials CrBr3 and CrI3. Using spin-dynamics simulations
parametrized from first principles, we reveal that the spin wave dispersion in such
materials can be tuned in a broad range of frequencies by strain-engineering, and that
a designed pattern of strain, as well as structural defects (halide vacancies) can be
turned useful in the design of spin-wave guides. Lastly, we discuss the realization of
magnonic crystals by moiré-periodic modulation of magnetic parameters in van der
Waals heterostructures, where we show that the several nanometer small periodicities
in such samples are ideal for the interference of terahertz spin waves. Recalling the wide
range of possibilities for manipulating spin waves in such two-dimensional materials,
we therefore suggest these systems as a front-runner for prospective terahertz magnonic
applications.

Keywords: Magnetic skyrmions; Spin waves; Chiral magnets; Spintronics.



Resumo

O controle preciso da skyrmiônica emagnônica emmateriaismagnéticos é a chave para o
desenvolvimento de novas tecnologias baseadas em spin e para aplicações de transporte
de informações. Essencialmente, a estabilidade inerente dos skyrmions magnéticos
(favorecida por sua carga topológica) junto com seu tamanho extremamente pequeno
(podendo chegar até alguns nanômetros) e a corrente ultrabaixa necessária paramovê-los
em nanoestruturas são as principais vantagens da skyrmiônica. Não menos importante,
a magnônica oferece menor consumo de energia em comparação à eletrônica e a
excitação de magnons de alta frequência (com comprimento de onda abaixo de 100 nm)
torna possível a criação de dispositivos nanométricos para o transporte de informação
ultrarrápido. Mesmo com extensa pesquisa realizada nos últimos anos, a manipulação
precisa de skyrmions e ondas de spin (magnons) em nanoestruturas não é totalmente
dominada e precisa ser tratada antes da realização de dispositivos skyrmiônicos e
magnônicos funcionais. Nesta tese, revelamos várias alternativas para a manipulação de
skyrmions e ondas de spin em diferentes materiais, como magnetos quirais espessos,
estruturas heteroquirais, híbridos de supercondutores e magnetos, assim comomateriais
magnéticos bidimensionais. Fazemos uso de um modelo de multiescala para simular
numericamente os estados magnéticos em cada material considerado, desde o controle
micromagnético ao atomístico. Primeiro exploramos os diferentes mecanismos de
nucleação, energia de ativação e a evolução temporal da formação de skyrmions em
filmes magnéticos quirais, cruciais para a realização de dispositivos baseados em
skyrmions. Mostramos que a estrutura do skyrmion é formada a partir da fase cônica
progressivamente, muito provavelmente pela formação de bobbres quirais, seguida pelo
crescimento cilíndrico de skyrmions individuais da superfície do filme. Isso reflete uma
nucleação unidimensional da fase de skyrmion, com uma barreira de ativação de alguns
elétron-volts por skyrmion para o caso de MnSi (Silicato de manganês). Além disso,
revelamos o comportamento interessante de criação-aniquilação de skyrmions perto do
limite de fase entre as fases cônica e de skyrmions, onde lembramos que essa comutação
entre estados topologicamente distintos foi proposta como uma operação de bits (dígitos
binários) para armazenamento de informações. A seguir, discutimos o movimento de
skyrmions ferromagnéticos e antiferromagnéticos emmagnetos heteroquirais. Relatamos
a deflexão característica de skyrmions ferromagnéticos ao se mover através de uma
interface heteroquiral, onde a extensão de tal deflexão é ajustada pela corrente polarizada
de spin aplicada e amagnitude da interaçãoDzyaloshinskii-Moriya. A seguir, mostramos
que o skyrmion antiferromagnético atinge velocidades muito mais altas do que sua
contraparte ferromagnética, mas experimenta um confinamento muito mais forte em
nanoestruturas heteroquirais, o que reforça os skyrmions antiferromagnéticos como uma
escolha favorável para dispositivos baseados em skyrmions. Depois disso, estudamos



o interessante acoplamento de skyrmions magnéticos e vórtices supercondutores em
heteroestruturas magneto-supercondutoras. Realizamos simulações numéricas, com
base em observações experimentais, para demonstrar que o campo magnético emitido
pelos skyrmions pode nuclear antivórtices em um filme supercondutor adjacente,
dando origem a um objeto topológico híbrido, o par skyrmion-vórtice, que abriga
recursos promissores para skyrmiônica e aplicações em computação quântica. Em
seguida, exploramos amanipulação de umúnico par skyrmion-vórtice quando correntes
são aplicadas nas partes supercondutoras e magnéticas da heteroestrutura, o que é
importante para o controle dos skyrmions em nanoestruturas. Em seguida, fazemos
uso da alta gama de possibilidades de se manipular os parâmetros magnéticos em
materiais bidimensionais para revelar um diagrama de fase rico de configurações
exóticas em monocamadas magnéticas com interação de troca de primeiro vizinho
suprimida, onde mostramos que configurações únicas são estabilizadas pela competição
entre as interações de troca de segundos vizinhos, Dzyaloshinskii-Moriya, e a interação
dipolar. Além disso, mostramos a coexistência de cicloides de spin ferromagnéticas e
antiferromagnéticas, bem como novos tipos de skyrmions e paredes de domínio quirais.
Finalmente, na última parte da tese, apresentamos as propriedades de ondas de spins
nos materiais magnéticos bidimensionais CrBr3 e CrI3. Usando simulações de dinâmica
de spin parametrizadas a partir de calculos de primeiros princípios, revelamos que a
dispersão da onda de spin em tais materiais pode ser sintonizada em uma ampla gama
de frequências por meio de deformações no material, e que um padrão de deformação,
bem como de defeitos estruturais (vacâncias) pode ser útil no desenvolvimento de guias
de onda de spin. Por fim, discutimos a realização de cristais magnônicos por modulação
periódica dos parâmetros magnéticos em padrões de moiré em heteroestruturas de
van der Waals, onde mostramos que a periodicidade nanométrica em tais amostras é
ideal para a interferência de ondas de spins na frequência de terahertz. Relembrando
a ampla gama de possibilidades de manipulação de ondas de spins em tais materiais
bidimensionais, sugerimos, portanto, esses sistemas como promissores para aplicações
em magnônica de alta frequência.

Palavras-chave: Skyrmions magnéticos; Ondas de spin; Magnetos quirais; Spintrônica.



Abstract

De precieze controle van skyrmionica en magnonica in magnetische materialen is de
sleutel tot de ontwikkeling van nieuwe spin-gebaseerde technologieën en toepassin-
gen voor informatietransport. In wezen zĳn de inherente stabiliteit van magnetische
skyrmionen (geleverd door hun topologische lading), samen met hun extreem kleine
formaat (tot enkele nanometers) en de ultralage drempelstroom die nodig is om ze in
nanostructuren te verplaatsen, de belangrĳkste voordelen van skyrmionica. Niet in de
laatste plaats biedt magnonica een lager stroomverbruik in vergelĳking met elektronica
en de excitatie van hoogfrequente (sub-100 nm golflengte) magnons maakt het mogelĳk
om nanometrische apparaten te creëren voor ultrasnel informatietransport. Hoewel
er de afgelopen jaren uitgebreid onderzoek is gedaan, is de precieze manipulatie van
skyrmionen en spingolven (magnonen) in nanostructuren nog niet volledig begrepen
en moet deze worden aangepakt voordat functionele skyrmionische en magnonische
apparaten kunnen worden gemaakt. In dit proefschrift onthullen we verschillende
methodes voor de manipulatie van skyrmionen en spingolven in verschillende mate-
rialen, zoals bulk chirale magneten, heterochirale structuren, magneet-supergeleider
hybriden en tweedimensionale magnetische materialen. Wemaken gebruik van een mul-
tischaal model om de magnetische toestanden van elk beschouwd materiaal numeriek
te simuleren, van micromagnetische tot atomistische controle. We onderzoeken eerst de
verschillende nucleatiemechanismen, de activeringsenergie en de tĳdsevolutie van de
vorming van skyrmion in chirale magnetische films, cruciaal voor de realisatie van op
skyrmion gebaseerde apparaten. We laten zien dat het skyrmion-rooster progressief
wordt gevormd uit de conische fase, hoogstwaarschĳnlĳk door de vorming van chirale
bobbers, gevolgd door de cilindrische groei van individuele skyrmionen vanaf het
filmoppervlak. Dit weerspiegelt een staafachtige (eendimensionale) nucleatie van de
skyrmionfase, met een activeringsbarrière vanmeerdere elektronvolts per skyrmion voor
het geval van MnSi (mangaanmonosilicide). Bovendien onthulden we het interessante
knipperende (creatie-annihilatie) gedrag van skyrmionen dicht bĳ de fasegrens tussen
de conische en skyrmion-fasen, waarbĳ we ons herinneren dat dergelĳk schakelen
tussen topologisch verschillende toestanden overeenkomt met een bitbewerking voor
informatieopslag. Vervolgens bespreken we de beweging van ferromagnetische en
antiferromagnetische skyrmionen in heterochirale magneten. We tonen de karakter-
istieke afbuiging van ferromagnetische skyrmionen wanneer ze over een heterochirale
interface bewegen, waarbĳ de mate van een dergelĳke afbuiging wordt afgestemd door
de toegepaste spin-gepolariseerde stroom en de grootte van de Dzyaloshinskii-Moriya-
interactie. Hierna laten we zien dat het antiferromagnetische skyrmion veel hogere
snelheden bereikt dan zĳn ferromagnetische tegenhanger, maar toch een veel sterkere
opsluiting ervaart in nano-engineered heterochirale sporen, wat antiferromagnetische



skyrmionen versterkt als een gunstige keuze voor op skyrmion gebaseerde apparaten.
Daarna bestuderen we de interessante koppeling van magnetische skyrmionen en
supergeleidende wervels in magneet-supergeleider heterostructuren. We voeren nu-
merieke simulaties uit, gebaseerd op experimentele waarnemingen, om aan te tonen dat
het stray veld van magnetische skyrmionen antivortices kan vormen in een aangren-
zende supergeleidende film, wat aanleiding geeft tot een hybride topologisch object,
het skyrmion-vortex-paar, dat veelbelovende eigenschappen vertoont voor skyrmionica
en quantum computing-toepassingen. Vervolgens onderzoeken we de manipulatie
van een enkel skyrmion-vortex-paar wanneer stromen worden aangelegd in zowel
supergeleidende als magnetische delen van de heterostructuur, wat van belang is voor
gefaciliteerde skyrmion-geleiding in circuittoepassingen. Daarna maken we gebruik
van de hoge afstembaarheid van magnetische parameters in tweedimensionale mag-
netische materialen om het rĳke fasediagram van exotische magnetische configuraties
in magnetische monolagen met onderdrukte naaste-buren uitwisseling te onthullen,
waar we laten zien dat unieke configuraties worden gestabiliseerd door concurrentie
tussen de uitwisselingsinteracties van de tweede buur, Dzyaloshinskii-Moriya, en de
dipoolinteractie. Daarnaast tonen we het naast elkaar bestaan van ferromagnetische en
antiferromagnetische spin-cycloïden, evenals nieuwe soorten skyrmionen en chirale
domeinwanden. Ten slotte presenteren we in het laatste deel van het proefschrift de
spingolfeigenschappen van de tweedimensionale magnetische materialen CrBr3 en
CrI3. Met behulp van spin-dynamica-simulaties die zĳn geparametriseerd op basis
van eerste principes berekeningen, onthullen we dat de spingolfdispersie in dergelĳke
materialen kan worden afgestemd op een breed spectrum aan frequenties door middel
van strain-engineering, en dat een ontworpen rekpatroon, evenals structurele defecten
(halogenidevacatures) kan worden gebruikt bĳ het ontwerpen van spin-golfgeleiders.
Ten slotte bespreken we de realisatie van magnonische kristallen door moiré-periodieke
modulatie van magnetische parameters in van der Waals heterostructuren, waar we
laten zien dat de korte periodiciteiten, van enkele nanometers, in dergelĳke systemen
ideaal zĳn voor de interferentie van terahertz spingolven. Gebaseerd op het brede scala
aanmogelĳkheden voor het manipuleren van spingolven in dergelĳke tweedimensionale
materialen, stellen we deze systemen daarom voor als veelbelovende kandidaten voor
toekomstige terahertz magnonische toepassingen.

Trefwoorden: Magnetische skyrmionen; Spin golven; Chirale magneten; Spintronica.
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1
Introduction

We start this thesis with a short historical overview of magnetism, followed by an
introduction of skyrmionic and magnonic states in magnetic materials. In this chapter,
we will see how the magnetic skyrmions and spin waves can be detected experimentally
and what is the relevance of such research field from the scientific and technological
perspectives. We will discuss the recent advances in the field and provide the motivation
and a detailed outline of the thesis.

1.1 Hystorical overview

The history of magnetism dates back to pre-Christian times. People in ancient
Greece and China were familiar with the natural "magic" of some stones, which had
the ability to attract some objects by remote control. In fact, the earliest observations on
magnets are attributed to the Greek philosopher Thales of Miletus, in the sixth century
BC. According to Aristotle, Thales thought some stones had souls, because iron is
attracted to them [42]. The properties of the magnets were also used in China during the
Han dynasty (206 BC – 220 AD), where the first compass ever has been reported [16, 43].
The ancient chinese compass, called Si Nan, which means the "South pointer", consisted
in a magnetic stone carved in the shape of a Chinese spoon and placed on a flat square
bronze or copper plate [Fig. 1.1 (a)]. The spoon turns on the base to align its handle
with the Earth’s magnetic field, thus pointing to the south after each rotation. The
material that composed the compass was most probably the mineralmagnetite, the iron
oxide Fe3O4 [Fig. 1.1 (b)], which develops in a natural way by volcanic activity. When
magnetized, the magnetite is also called lodestone. Pieces of lodestone, which served as
compass needles, were of great importance to early navigation, paving the way for more
precise instruments that allowed explorers to accurately navigate the seas, effectively
changing the course of history. The importance for naviation is clear from the origin of
the name lodestone, which in Middle English means "course stone" or "leading stone".
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Figure 1.1 – (a) The "South pointer", ancient compass used for orientation in China. (b) A sample
of Magnetite, or iron oxide Fe3O4. When magnetized, the Magnetite is also called
Lodestone. (c) Map of Greece indicating the regions of Magnesia and Mount Ida,
from where the name "magnet" may have originated. (d) Pierre de Maricourt (1269)
discovered that the direction of a compass needle near a natural magnet formed
lines that surrounded the material and that such lines passed through two points
diametrically opposed to each other that he called "poles". (e) William Gilbert (1600)
discovered that the Earth itself is a great magnet, which explains why magnetic
needles point to the north/south direction. Adapted from Refs. [1–4].

Following the etymology, the word magnet originates from the ancient Greek
termmagnetis lithos, meaning "stone fromMagnesia", which probably refers to the region
of Magnesia, a famous locality of the magnetic stones in ancient Greece [Fig. 1.1 (c)]. The
location of Magnesia is however debatable, some sources say the name was given after
the city of Magnesia in Asia Minor (modern Manisa, in Turkey) [44]. On the other hand,
Pliny the Elder in his encyclopedia Naturalis Historia [45], refers to the tale of a shepherd,
named Magnes, who was pasturing his herds in Mount Ida (Crete) [Fig. 1.1 (c)] when
he discovered that some stones in the ground were attracted by the iron nails in his
sandals, and named the stones after himself. [45].

Regardless of the ancient knowledge of magnets, it was only in 1269 that scientists
began to understand it, when Pierre de Maricourt (also known as Petrus Peregrinus in
Latin language) discovered that the direction of a compass needle near a natural magnet
formed lines that surrounded the material [Fig 1.1 (d)]. In his letter of 1269 [46], Pierre
explained that such lines passed through two points diametrically opposed to each
other. He was the first to use the word pole to describe those points. In the same work,
he also reported that like poles repel each other while different poles attract, and that by
breaking a magnet you get two smaller ones. However, the reason why compass needles
pointed north/south was not fully understood by Pierre and the scientists of his time.
The philosophy of magnetic directivity of the early thirteenth century proposed that
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Figure 1.2 – Some of the most influential figures in the history of eletromagnetism.

the compass needle would point to the North Star (Polaris). In the same century, the
idea of a large magnetic island on the north pole that attracted the compass has been
proposed [43]. It was only in 1600 thatWilliamGilbert, in hismonographDeMagnete [44],
presented experiments with his model earth called the "terella", and comparing it to the
inclination of magnetic needles which had been measured at many points on the Earth’s
surface, He concluded that the Earth itself was a great magnet [Fig 1.1 (e)]. Therefore, the
compass needle aligned to the Earth itself, rather than the stars as previously assumed.

Gilbert’s monograph was arguably the first modern scientific text and inspired
extended research in the following years. Remarkably, in 1819, the Danish physicist Hans
Oersted eventually discovered a connection between electricity and magnetism. When
performing a lecture demonstration for some students, He noticed that a current-carrying
wire was capable of deflecting a compass needle nearby [47]. The electromagnetic
revolution had begun [Fig 1.2]. Soon after Oersted reported his discovery, André-Marie
Ampère and Dominique-François Arago (1822) showed that a current-carrying coil was
equivalent to a magnet [48], and Jean-Baptiste Biot and Felix Savart investigated the
forces exerted on magnets by currents [49]. A decade after Oersted’s discovery, Michael
Faraday (1831) found that themovement of amagnet near ametallicwire induced current
in the wire. He had discovered the electromagnetic induction [50]. All this experimental
work inspired James Clerk Maxwell’s (1855) to publish his paper On Faraday’s lines of
force [51], where he reduced all of the current knowledge of electromagnetism into a
linked set of differential equations.

Interestingly, the relation between a current-carrying coil and a magnet led
Ampère to propose that matter contained tiny (vanishingly small) current loops that
were somehow aligned when the material was magnetized. This model of permanent
magnets was proposed almost a century before the description of the quantum nature
of matter, from which we know that magnetization is actually created by aligning the
intrinsic spin momentum of electrons [16], a situation quite similar to that proposed
by Ampère. In chapter 2, we will present a detailed discussion of the origin of atomic



1.2. THE STUDY OF SPIN WAVES 35

magnetic moments and how they can align to produce magnetic order in matter.

1.2 The study of spin waves

With the advance of quantum mechanics in the beginning of twentieth century,
the scientific knowledge on magnetism has made substantial progress. It was in 1930
that Felix Bloch, who had already worked under the supervision of Werner Heisenberg
in his doctoral thesis, theoretically proposed the concept of spin waves to explain the
variation of spontaneous magnetization with temperature near the absolute zero, which
resulted in the derivation of his famous formula known as Bloch’s T3/2 law [52, 53]. He
also developed a description of boundaries between magnetic domains, now known
as Bloch walls [16]. According to Bloch, the strong correlation between the atomic
magnetic moments not only leads to magnetic order such as ferromagnetism, but also
allows the propagation of magnetic excitations. When amagnetic moment is excited, e.g.,
by thermal fluctuations or some oscillating applied magnetic field, the neighbouring
magnetic moments will also ’feel’ the oscillation through the magnetic coupling, for
example through the exchange interaction described earlier by Heisenberg, thus leading

Figure 1.3 – (a) Illustration of a spin wave of wavelength λ propagating along the direction
indicated by the green arrow. Orange arrows represent the magnetic moments of
the atomic sites. (b) Scanning transmission X-ray microscopy (STXM) image of spin
waves in a NiFe layer, excited using a.c. magnetic fields. (c) Schematic of a magnonic
crystal structure comprising an array of shallow grooves on the surface of a YIG
film. Here, the spin waves are excited by an input antenna and travel through the
periodic modulation before being measured at the output antenna. (d) Spin wave
transmission characteristics for the magnonic crystal in (c), for different values of
the groove depths δ. Adapted from Refs. [5, 6].
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to an excitation that propagates like a wave in the magnetic system, as illustrated in
Fig. 1.3 (a). Later, Holstein and Primakoff (1940) [54], and Dyson (1956) [55], have made
further development in the foundation of spin waves theory. Their quantum formulation
showed that spin excitations are quantized, and the quanta of spin waves was called
magnon [32].

Spin waves can be observed through different experimental techniques. The
traditional methods used to detect spin waves are [56]: (i) inelastic neutron scattering
(INS), which measures the energy loss of a neutron beam, resulting from the interaction
of the spin 1/2 of the incoming neutrons with the electron’s spin in the solid [57]. (ii)
Inelastic light scattering, i.e., Brillouin scattering [58], Raman scattering [59] and X-ray
scattering [5]. Similarly to the INS, light scattering techniques measure the energy loss
of photons reflected from or transmitted through a magnetic material. Other common
methods are: (iii) Ferromagnetic resonance [60], which measures the absorption of
microwaves incident on a magnetic material, and (iv) Spin polarized electron energy
loss spectroscopy (SPEELS), whose basic concepts are similar to those of INS, but has
been shown to be able to excite high energy surface magnons [61]. Fig. 1.3 (b) illustrates
one example of X-ray microscopy image of spin waves in a NiFe layer, where the spin
waves are excited using a.c. magnetic fields.

Magnonics is the sub-field of magnetism that deals with the excitation, propaga-
tion, control and detection of spin waves. Magnonics offers lower power consumption
compared to electronics, and the excitation of sub-100 nm wavelength magnons makes
the creation of nanometric devices possible [62]. Fig. 1.3 (c) illustrates one example
spin-wave based device, the so called magnonic crystal. Magnonic crystals are artificial
materials designed in such a way that the magnetic properties of the media are charac-
terized by periodic lateral variation[63]. The spin wave spectra in such materials exhibit
features such as band gaps, where the waves are not allowed to propagate, as illustrated
in Fig. 1.3 (d). Magnonic crystals have potential application in information transport
and processing based on magnons. In addition, magnonic interferometers [64, 65]
and Voltage-controlled logic gates [66] can serve as low-power signal processing de-
vices [67, 68].

1.3 The study of magnetic skyrmions

Skyrmions are topologically stable configurations, originally proposed by the
British physicist Tony Skyrme (1962) to describe elementary particles in a 4-dimensional
vector field [69]. Interestingly, skyrmionic solutions have turned out to be relevant
in several condensed matter systems such as in liquid crystals [70], quantum Hall
systems [71] and Bose–Einstein condensates [72]. One particular form of skyrmions is
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Figure 1.4 – Experimental observation of magnetic skyrmions. (a) Magnetic phase diagram of
MnSi as a function of applied magnetic field and temperature. (b) Illustration of
skyrmion lattice phase. (c) Typical neutron scattering diffraction pattern of the SkL
in MnSi. (d) Top: illustration of STM tip used to detect skyrmions by spin-polarized
tunneling current. Bottom: SP-STM image of nanometer scale skyrmions in a bilayer
of FePd. (e) Skyrmion lattice state imaged by Lorentz TEM. The colors indicate the
in-plane component of the magnetization, with spin orientation indicated by white
arrows. (f) MFM image of skyrmions (yellow dots) in a Ir/Fe/Co/Pt multilayer
film, where the colors indicate the MFM probe resonance shift, proportional to the
out-of-plane component of the magnetization. Adapted from Refs. [7–11]

themagnetic skyrmion, found in chiralmagneticmaterials that exhibit spiralmagnetism
due to the Dzyaloshinskii–Moriya interaction (DMI), which in turn results from the spin-
orbit coupling in asymmetric crystalline structures [73]. Extended lattices of magnetic
skyrmions were first observed experimentally in 2009, in B20-type bulk systems such as
MnSi [7] and Fe1−xCoxSi [74], but they are also present in thin film chiral magnets [10],
where the DMI is created at the interface between the magnetic thin film and a heavy
metal material [25]. Fig. 1.4 (a) shows the magnetic phase diagram of MnSi as a function
of applied magnetic field and temperature, where the magnetic phases were identified
by neutron scattering experiments [7]. In particular, the skyrmion lattice (SkL), also
known as the A-phase, is illustrated in Fig. 1.4 (b). In this phase, the magnetization
swirls locally forming some kind of magnetic whirlpools, each one representing a single
skyrmion on a ferromagnetic background, and the hexagonal modulation of the SkL
can be observed as peaks in the neutron scattering diffraction pattern, as illustrated in
Fig. 1.4 (c).

In addition to neutron scattering experiments, the spin texture of magnetic
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skyrmions can also be observed in real-space by a variety of techniques. Some of the
common methods used to detect magnetic skyrmions are: (i) spin-polarized scanning
tunneling microscopy (SP-STM) [9], where an extremely sharp magnetic tip [Fig. 1.4 (d)]
is moved systematically over the sample while a voltage is applied between the tip and
the magnetic material, thus allowing electrons to tunnel between the two. Electrons
with spins matching the tip’s magnetization will have a higher chance of tunneling, thus
giving information about the local spin configuration; (ii) Lorentz transmission electron
microscopy (TEM) [10], where a high-energy electron beam is transmitted through a
thin magnetic film. When the beam passes through a region of magnetic induction in the
sample, the electrons are deflected by the Lorentz force, and the in-plane components
of the magnetic texture can be imaged [Fig. 1.4 (e)]; (iii) Magnetic force microscopy
(MFM) [11]. In this method, the interaction between the stray field generated by the
sample and a magnetic tip (or MFM probe) is calculated. The tip-sample magnetic
interactions are then used to reconstruct the magnetic structure of the sample surface
[Fig. 1.4 (f)]. Other possibilities for the efficient detection of skyrmions are the Magneto-
optic Kerr effect (MOKE) microscopy [75], as well as the electrical detection by Hall
voltage measurements [76].

Figure 1.5 – Skyrmions for applications. (a) Train of skyrmions in a racetrack for memory devices.
The skyrmions serve as memory bits, passing through magnetic read/write heads
positioned on the racetrack. (b) Skyrmion lattice as magnonic crystal. The dispersion
relation for spin-wave propagation along waveguide with and without skyrmions is
shown, displaying gaps in frequency related to the skyrmion lattice periodicity. (c)
Schematic of a reconfigurable skyrmion logic gate. Insets show some cases of inputs
and their corresponding outputs and the evolution of the position of skyrmion. (d)
Schematic of the two-layer magnetic material used as the platform for the skyrmion
qubit coupling scheme. Qubit coupling is adjusted by a non-magnetic spacer (blue
plate), and logic states are adjusted by electric fields (yellow plates). Adapted from
Refs. [12–15].
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A particularly interesting property of magnetic skyrmions is that they are
topologically protected objects, which means that the skyrmionic texture cannot be
destroyed into a trivial solution by continuous deformation. This property increases
the stability of the skyrmions in such a way that they are able to move throughout
the sample without losing their shape, and makes them promising candidates for
technological applications, such as spin-based information processing and storage
devices [12]. Nevertheless, the fact that spins are arranged in a discrete lattice rather than
a continuous one, makes it possible for the skyrmions to be destroyed in a first-order
phase transition, characterized by an energy barrier that determines the stability of the
skyrmion phase. Generally, skyrmions are highly stable magnetic objects and can be
observed even at room temperature in some materials [77].

Skyrmionics refers to the emerging technologies that deal with the creation and
annihilation, propagation, control and detection of magnetic skyrmions. The remarkable
stability, extremely small size (down to a few nanometers), and the ultralow threshold
current necessary to move the skyrmions in nanostructures are the main advantages of
skyrmionics. Fig. 1.5 shows some examples of skyrmion-based applications. Commonly
suggested components for which skyrmionics can be used are: skyrmion racetrack
memory [19]; magnonic crystals [78]; logic gates [79] and radio-frequency devices [80].
In addition, recent work has also suggested skyrmion qubits as logical elements for
quantum computing [11, 15]. Advances in two-dimensional magnetic materials have
also raised expectations towards skyrmionic and magnonic devices, as these systems
offer a wide range of magnetic parameter manipulations and are therefore suggested as
promising candidates for application in cutting-edge devices. Fig. 1.6 shows the number
of scientific publications over the years including the keyword "magnetic skyrmion".
Note that the relevance from both scientific and technological perspectives has created a
great interest in the subject in the last decade, with a rapid increase in the number of

Figure 1.6 – Number of publications along the years including the keyword "magnetic skyrmion"
obtained from the Web of Science from 2005 to 2020.
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publications to date.

1.4 Structure of the thesis

After presenting a general introduction (chapters 2 and 3) of the theoretical
approaches and numerical methods used to investigate skyrmionic and magnonic states
in magnetic materials, we organize the results of the thesis in three parts: In Part I
(chapter 4), we explore the nucleation mechanism and stability of magnetic skyrmions
in bulk chiral magnetic films; Part II (chapters 5 and 6) is dedicated to the manipulation
of magnetic skyrmions in thin film heterostructures; and in Part III (chapters 7 and 8) we
explore the fundamental properties of spin-textures and magnonics in two-dimensional
magnets. The chapters are organized as follows:

• In Chapter 2, we introduce the basic theoretical concepts of magnetic interactions.
Weprovide a detailed description ofmagnetic states, from the atomic spinmoments
to skyrmionic and magnonic phases. The concepts presented in this chapter will
be necessary for a complete understanding of the results presented in the next
chapters of the thesis.

• InChapter 3, we introduce the numerical approaches for simulating the considered
magnetic textures. We discuss the multiscale modeling used to simulate the
magnetic states, from the micrometer to nanometer length scales, as well as the
methods used for finding minimal energy paths of magnetic phase transitions.

• In Chapter 4, we explore the nucleation mechanism and stability of magnetic
skyrmions in chiral magnetic materials. We show how the skyrmion lattice is
formed from the conical phase progressively in small domains, and study the
different nucleation mechanisms and the time evolution of the skyrmion lattice
formation in chiral magnetic films. Part of the results presented in this chapter are
published in Ref. [39].

• In Chapter 5, we report the characteristic features of skyrmion motion in hete-
rochiral magnets, for both the ferromagnetic (FM) and antiferromagnetic (AFM)
skyrmions. We show that a heterochiral interface deflects the trajectory of FM
skyrmions. Further analysis reveal that such deflection is completely absent in
the AFM case, and that the AFM skyrmion achieves much higher velocities and
stronger confinement in nanoengineered heterochiral tracks when compared to
its FM counterpart, which reinforces AFM skyrmions as a favorable choice for
skyrmion-based devices. The results presented in this chapter are published in
Ref. [81].
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• In Chapter 6, we study the coupling of magnetic skyrmions and superconducting
vortices in magnet-superconductor (M-S) heterostructures. We discuss experimen-
tal observations of the skyrmion-vortex interaction in hybrid material, followed
by numerical study of the nucleation of the skyrmion-vortex pair (SVP). Next,
we provide an in-depth analysis and investigate the manipulation of the SVP
correlations in a M-S hybrid. We combine micromagnetic and molecular dynamics
simulations to investigate the behavior of skyrmions and vortices simultaneously
when currents are applied into both S and M part of the heterostructure, which is
of importance for the facilitated skyrmion guidance in racetrack applications. The
results presented in this chapter are published in Refs. [11] and [82].

• In Chapter 7, we investigate the effects of suppressed nearest-neighbour exchange
in magnetic monolayers. We report the rich phase diagram of exotic magnetic
configurations, obtained for both square and honeycomb lattice symmetries,
comprising coexistence of ferromagnetic and antiferromagnetic spin-cycloids,
as well as multiple types of magnetic skyrmions. We also reveal that magnetic
monolayers could be good candidates to host the antiferromagnetic skyrmions
that are experimentally evasive to date. The results presented in this chapter are
published in Ref. [83].

• In Chapter 8, we present the spin-wave (SW) properties in two-dimensional (2D)
magnetic materials, such as monolayer chromium trihalides CrBr3 and CrI3. We
reveal that the SW dispersion in 2D materials can be tuned in a broad range
of frequencies by strain-engineering, paving the way towards flexo-magnonic
applications, and that defect engineering these monolayers can be useful in
design of spin-wave guides. We discuss the spectra of spin-waves propagating
across a moiré-periodic modulation of magnetic parameters in a van der Waals
heterostructure, and show that such structures hold the necessary nanometric
modulation period for realization of a magnonic crystal in the terahertz frequency
range.

• In Chapter 9, we summarize the results of this thesis and present future perspec-
tives.



42

2
Theoretical background

In this chapter, we review the basic concepts ofmagnetostatics, magnetodynamics
and the different theoretical approaches used to investigate skyrmionic and magnonic
states in magnetic materials. We start introducing the magnetic moment and its response
to external applied fields and collective interactions. We further provide a detailed
description of the static and dynamical properties of magnetic skyrmions, as well as
the main characteristics of spin waves. The purpose of this chapter is to provide the
reader with the necessary knowledge to fully understand the results presented in the
next chapters of the thesis.

2.1 The magnetic moment

The fundamental ingredient of magnetism is the so-called magnetic moment,
which defines the strength and orientation of magnetic fields in matter. In the classical
eletrodynamics, the elementary magnetic moment is equivalent to a tiny (vanishingly
small) current loop [see Fig. 2.1 (a)] and can be expressed as

µ �
1
2

∫
r × j(r)dV, (2.1)

where j(r) is the current density (per element of area) at the position r, and dV is the
volume element. For the case of a uniform current I circulating in a plane loop of areaA,
the current density can be expressed as j(r)dV � Idl, where dl is the element of distance
along the loop [see Fig. 2.1 (b)], and the Eq. (2.1) takes the simple form

µ � I
∫

dA � IA , (2.2)

where dA �
1
2r × dl points normal to the loop plane, in a sense determined by the

direction of the circulating current, and |A | � A. In the International System of Units
(SI), the magnetic moment is expressed in Ampere-Square Meter [Am2].
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Figure 2.1 – (a) A circulating electric current I is equivalent to a magnetic moment, which defines
the strength and orientation of themagnetic fieldB. (b) The area of a loop is obtained
by summing the area of the elementary triangles. Retrieved from Ref. [16].

The magnetic field B created by the current loop is given by the Biot–Savart
law [84]

B � −
µ0

4π

∫
r′ × j(r′)dV
|r′|3 , (2.3)

where r′ is the vector connecting dV to the observation point. The field of the magnetic
moment has the same form as that of an electric dipole formed of positive and negative
charges separated by a small distance. Consequently, the magnetic moment is generally
referred to as a magnetic dipole moment.

In the atomic level, the magnetic moments emerge from themotion of electrons in
the atomic orbitals and from the so-called intrinsic spin momentum. From the classical
point of view [Eq. (2.2)], the magnetic moment created by an electron of mass me ,
moving with velocity v in a circular orbit of radius r0, can be written as µL � Iπr2

0 ,
where I � −e/τ is the current generated by the electron motion and τ � 2πr0/v the
rotation period. Notice that, since the charged particle has mass, the orbital magnetic
moment µL is always connected with the orbital angular momentum of the electron,
which in the classical description is given by L � me vr0, and we obtain

µL � − e
2me

L. (2.4)

The ratio of the magnetic moment and the angular momentum of a particle
or system is known as the gyromagnetic ratio, and it is often represented by the Greek
letter γ (Gamma). In the above relation for the electron in a circular orbit, γ � −e/2me .
However, the quantum nature of the electron can not be captured by the classical
approximation, and a correct understanding of the electron angular momentum requires
the introduction of quantum mechanics.
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Figure 2.2 – (a) The Bohr model for the hydrogen atom. The electron moves in circular orbit
around the nucleus of charge Ze. (b) Orbital magnetic moment µL induced by the
electron motion. (c) Intrinsic spin magnetic moment µS. Adapted from Ref. [16].

It is characteristic of angular momenta in quantum mechanics that its magnitude
is quantized in terms of the orbital quantum number. In the semi-classical description
of the hydrogen atom proposed by Niels Bohr [see Fig. 2.2 (a)], the electrons circulate
around the nucleus with angular momentum that takes the form L � nh/2π, with n a
non-zero, positive integer and h the Planck constant. The Bohr atomicmodel was the first
one to incorporate quantum theory and to successfully explain the radiation spectrum
of atomic hydrogen. The angular momentum quantization was further corroborated by
the application of the Schrödinger‘s equation to the atomic model, where the magnitude
of the orbital angular momentum assumes the form L �

√
l(l + 1)~ and its projection

along z-direction satisfies Lz � ml~, with l � 0, 1, 2, ..., and ml � l, (l − 1), ... −l, the
azimuthal and magnetic quantum numbers, respectively. Therefore, Eq. (2.4) can be
rewritten on its quantized form as follows

µL � −µBL, (2.5)

where we define the Bohr magneton µB ≡ −e~/2me and L ≡ L/~. Fig. 2.2 (b) illustrates
the orbital magnetic moment induced by the electron motion.

In addition to the orbital momentum, elementary particles and nuclei have the
so-called spin angular momentum, commonly represented by S. The spin momentum
is a pure quantum phenomena, with no classical analogy, and it is an intrinsic property
of fundamental particles, as is the case with the electric charge. The magnitude of the
spin angular momentum is quantized in terms of the spin quantum number, s, and
it is written as S �

√
s(s + 1)~, with s a multiple of 1/2 (i.e. s � 0, 1

2 , 1, 3
2 , ...). The

projection of S along z-direction satisfies Sz � ms~, where ms can only take one of 2s + 1
possible values: ms � s, (s − 1), ..., −s. Those particles with half-integer spin numbers
are known as fermions and satisfies the Fermi-Dirac statistics, while those particles
with integer spins are known as bosons and obey Bose–Einstein statistics [85]. For the
case of an electron, s � 1/2 and the spin component can only assume one of the two
values Sz � ±~/2. The spin angular momentum is then associated with a magnetic
moment, as illustrated in Fig. 2.2 (c). Similar to Eq. (2.5), the spin magnetic moment
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Figure 2.3 – Stern–Gerlach experiment, a beam of silver atoms enters a region where there is a
strong magnetic field gradient. Although silver has no orbital angular momentum
(L � 0), the silver beam splits in two, indicating a magnetic moment associated with
the spin angular momentum. Adapted from Ref. [16].

can be expressed as µS � −gSµBS, where S ≡ S/~ and gS is a correction factor known
as the Landé g-factor. The value of gS ≈ 2.0023192 is derived naturally from Dirac‘s
equation in the framework of relativistic quantum mechanics [86]. When both orbital
and spin angular momentum are coupled, the total magnetic moment can be written as

µ � −µB(gLL + gsS), (2.6)

where gL � 1 is the g-factor for the orbital angular momentum.

The electron spin angular momentum was observed experimentally for the first
time in 1921 by Otto Stern and Walther Gerlach. In the Stern–Gerlach experiment, a
beam of silver atoms enters a region where there is a strong magnetic field gradient
[see Fig. 2.3]. Although silver has no orbital angular momentum (L � 0), the silver
beam splits in two, indicating a magnetic moment associated with the spin angular
momentum. Notice that the spin and angular momentum of composite particles, such
as atoms and ions, are given by the combination of their constituents. The magnetism
is then inherently related to the electronic band structure, and the net unpaired spins
in the valence band of an element will determine whether the material is magnetic or
non-magnetic. For example, a helium-4 atom in the ground state has zero magnetic
moment, even though the quarks and electrons which make it up are all fermions with
non-zero spin. Generally, when several electrons are present on the same atom, the
resultant quantum numbers can be expressed by the sum over the individual quantum
numbers of all electrons,

S �

∑
i

si , L �

∑
i

li , Ms �
∑

i

msi , Ml �
∑

i

mli . (2.7)

The magnitudes of the spin and orbital moments become |S | �
√

S(S + 1) and |L | �
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L(L + 1), where the values of S and L will depend on how the electrons are distributed

in the atomic orbitals.

Notice that so far we have considered the spin and orbital angular momenta
separate since they are independent of one another. However, when both S and L are
present, they do couple via the so-called spin-orbit interaction, and we have to introduce
the concept of total angular momentum. In other words, due to the spin-orbit coupling,
the moments L and S are not separately conserved quantities (there is the possibility
for momentum transfer through spin-orbit coupling), but the total angular momentum
J ≡ L + S is conserved. The magnitude of the total momentum can be expressed as
| J | �

√
J(J + 1), where the total quantum number J can take the following range of

values, |L − S| ≤ J ≤ L + S, jumping only in integer steps. Therefore, we rewrite Eq. (2.6)
in the form

µ � −g JµB J , (2.8)

where, for gL � 1 and gS � 2,

g J �
3
2 +

S(S + 1) − L(L + 1)
2J(J + 1) . (2.9)

The gyromagnetic ratio (ratio of the magnetic moment to the angular momentum) can be
extracted from Eq. (2.8), and it differs from the classical description by the introduction
of the g-factor,

γ � −
g JµB

~
� −g J

e
2me

. (2.10)

The combination of quantum numbers which minimize the energy of the (many-
eletron) atom or ion can be estimated using Hund’s rules. The empirical method
proposed by Hund is to fill the atomic orbitals in a specific sequence. The first and
second Hund’s rules are: (i) first organize the electrons in a way to maximize S, and
(ii) maximize L without changing S. The first rule is justified by the fact that electrons
minimize their Coulomb interaction if they are separated, therefore, they tend to occupy
different orbitals. The second rule is understood by imagining that electrons orbiting in
the same sense can avoid each other during their motion, which again reduces Coulomb
repulsion. Finally, the value of J is determined by the third Hund’s rule: (iii) J � L − S if
the valence shell is less than half full; J � L + S if the shell is more than half full, and
J � S if the valence shell is exactly half full. The third rule is an attempt to minimize
the spin-orbit energy. The values of magnetic moment predicted by Hund’s rules and
Eq. (2.8), given by µ � g JµB

√
J(J + 1), are in very good agreement with the magnetic

moments obtained experimentally (via measurements of the susceptibility) for some
ions, e.g., the 4 f series. However, the Hund’s rules do not always appear to agree
with experiment. The reason for that is that the third rule fails when the crystal field
interaction is much stronger than the spin-orbit interaction, which is the case, e.g.,
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of most 3d ions. Experimental results suggest that, in the case of strong crystal field
interaction, the Hund’s rules can be fixed by taking L � 0 (so that J � S and g J � 2). This
effect is known as orbital quenching. For the case of 4 f ions, the orbitals are much less
extended away from the nucleus when compared with 3d orbitals, so that the crystal
field terms are much less important and Hund’s third rule is obeyed.

2.2 Magnetic moment dynamics

The orientation of the magnetic moment is sensitive to multiple magnetic
interactions, which may arise from the exchange of electrons with neighboring ions,
applied external fields, demagnetization fields, among other interactions. Let us first
consider the simplest casewhere an isolatedmagneticmoment µ is subjected to a uniform
external magnetic field, B. The energy is minimized when the magnetic moment aligns
parallel to the magnetic field, according to the Zeeman energy

EZeeman � −µ · B. (2.11)

In the case where the moment is not aligned with the external field, it becomes subject
to a torque given by

τ � µ × B, (2.12)

which tends to turn the moment towards the minimal energy position. However, since
the torque is equal to the rate of change of the total angular momentum, it can be
expressed as τ � ~(d J/dt). On the other hand, the magnetic moment is associated with
J by Eq. (2.8), and the torque is rewritten in the form τ � − 1

γ (dµ/dt). By substituting
that into Eq. (2.12), we obtain the Landau-Lifshitz differential equation for the magnetic
moment dynamics [16]

dµ
dt

� −γµ × B. (2.13)

Notice that, according to Eq. (2.13), the change in µ is perpendicular to both µ
and to B. The magnetic moment therefore precesses around the applied field direction
instead of turning towards B, as illustrated in Fig. 2.4 (a). Considering that B is along
the z-axis and µ makes an angle of θ with respect to B, Eq. (2.13) has solution

µx(t) �|µ| sin θ cos(ωLt)
µy(t) �|µ| sin θ sin(ωLt)
µz(t) �|µ| cos θ.

(2.14)

where ωL ≡ γB is the so-called Larmor frequency (named after Joseph Larmor). It is
important to notice that the Larmor frequency is independent of the angle θ between the
applied magnetic field and the magnetic moment direction. This property is crucial for
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Figure 2.4 – (a) Free precession of a magnetic moment µ around themagnetic field B (b) Damped
precession relaxes the magnetic moment towards the effective field Beff. Adapted
from Ref. [17].

applications such as in the nuclearmagnetic resonance (NMR) and electron paramagnetic
resonance (EPR) thechniques, since the precession rate gives access to details of the
intramolecular magnetic field around an atom in a molecule, regardless the spatial
orientation of the atomic spins.

The free precession is however an idealized situation in which there is no way
for the system to dissipate energy, and the angular momentum remains constant. In
the presence of energy dissipation, the precession amplitude decays in time, and the
magnetic moment spirals about the field until it reaches the equilibrium position
(parallel to the field) in a characteristic relaxation time, as illustrated in Fig. 2.4 (b).
The energy loss can be included into Eq. (2.13) by the introduction of a damping term.
One of the most widely used forms is that introduced by T. L. Gilbert, in the so-called
Landau–Lifshitz–Gilbert (LLG) equation [87]

dµ
dt

� −
γ

1 + α2

[
µ × Beff

+ αµ × (µ × Beff)
]
, (2.15)

where α is the dimensionless, Gilbert damping factor and Beff is the effective field acting
on the magnetic moment, as we discuss below.

In a real material, the atomic magnetic moments are subjected to much complex
collective interactions rather than a simple uniform external field. However, Eq. (2.15) can
be generalized in terms of the effective field Beff acting on the magnetic moment, which
can be expressed as Beff

� ∂H/∂µ, whereH is the Hamiltonian that accommodates all
magnetic interactions of the considered spin system.

In the macroscopic point of view, where the sample size is much larger than the
interatomic distances, it is convenient to define the magnetic moment per unit volume,
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M, also known asmagnetization. For that purpose, the magnetic moments are averaged
over small blocks of volume δV , which are large enough to have good macroscopic
average, but small compared to the sample dimensions so that M represents a local
quantity, given by

M �
1
δV

∑
i

µi , (2.16)

where the index i runs over all magnetic moments in the volume δV . The magnetization
vector can be further expressed asM � Ms m, where Ms � nµ is the so-called saturation
magnetization; n is the number of magnetic moments per unit volume, and m is the
unit vector representing the magnetization direction. The LLG equation is then written
in the macroscopic limit as

dm
dt

� −
γ

1 + α2

[
m × Beff

+ αm × (m × Beff)
]
, (2.17)

where Beff
�

1
Ms
∂H/∂m.

2.3 Collective interactions

In this section, we discuss the different types of magnetic interactions that might
contribute to the energyHamiltonian of themagnetic moments.Wewill see that, a strong
correlation between themagneticmoments can lead to long-rangemagnetic order, giving
rise to important phenomena, such as ferromagnetism and topological spin-textures. The
interaction between the magnetic moments also allows the propagation of information
throughout the material, for example, in the form of spin waves.

2.3.1 Magnetic dipolar interaction

As we know from the previous sections, each magnetic moment is associated
with a magnetic dipolar field. Therefore, the first interaction that wemight expect to play
a role whenmultiple magnetic moments are put together is the dipole-dipole interaction.
In this case, the energy of the system is minimized when the magnetic moments are
aligned "head to tail", with the magnetic poles facing their corresponding counterparts.
The dipole-dipole contribution to the Hamiltonian can be written as

Hdd � −1
2
µ0µ2

4π

∑
i , j,i

3(µ̂i · r̂i j)(µ̂ j · r̂i j) − (µ̂i · µ̂ j)
r3

i j

, (2.18)

where the sum runs over all pairs of magnetic moments in the system; ri j is the distance
between sites i and j, and µ0 is the vacuum permeability.

From this point of view, one might question if the dipolar interactions are the
responsible for the long-range magnetic order observed in some materials, such as in
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permanent magnets. To answer that question we can estimate the order of magnitude of
the dipolar energy. Consider two magnetic moments, each one with µ ≈ 1µB, separated
by r ≈ 1 Å. In this case, µ2/4πr3 ≈ 10−4 eV, which corresponds to 1 K in temperature
(i.e., KBT ≈ 10−4 eV, with T � 1 K and KB the Boltzmann constant). Therefore, the order
imposed by dipolar interaction is too weak, and can be easily destroyed by thermal
fluctuations. This can not explain most magnetic materials, which order at much higher
temperatures. As we shall see in the next section, the exchange interaction between
neighbouring ions is the one responsible for magnetic order in most magnetic materials.

In the continuous limit, where the magnetic moments can be expressed in terms
of the magnetization function [Eq. (2.16)], the dipolar field is commonly referred to as
demagnetization field. The dipolar energy is then determined by the integral over the
volume V of the magnet,

Hdd � −
µ0

2

∫
V
M(r) ·Hd(r)d3r, (2.19)

where

Hd(r) � −
1

4π

∫
V

[
3[M(r′) · �(r − r′)]�(r − r′) −M(r′)

| |r − r′| |3

]
d3r′ (2.20)

is the demagnetization field at the position r. Notice that, the analytical solutions for
the integrals in the above equations can be very difficulty in the case of arbitrary
magnetization profile and sample geometry. Therefore, the demagnetization field is
commonly solved by numerical integration.

2.3.2 Exchange interaction

The so-called exchange interaction is the one responsible for the phenomenon of
long range magnetic order in most magnetic materials, and it arises from the sharing of
electrons in the atomic bonds. The overlap of two or more electron wavefunctions in
the atomic bonds has to satisfy certain conditions which strongly affect the preferential
orientation of neighbouring magnetic moments. The fact that electrons are identical
particles implies that the exchange of two electrons must give the same electronic
density. For example, let us consider a system of two electrons (one from each atom
in the bond) with spatial coordinates r1 and r2 respectively. The first electron is in
the quantum state ψa(r1) and the second electron is in state ψb(r2), where the wave
functions ψa and ψb are the solutions of Schrödinger’s equation for each individual
atom. The joint wave functionΨ has to be invariant with respect to particle exchange,
i.e., |Ψ(1,2)|2 � |Ψ(2,1)|2. In addition, since electrons are fermions, and according to
the Pauli exclusion principle, two or more identical fermions can not occupy the same
quantum state simultaneously, the total eletronic wavefunction must be antisymmetric
Ψ(1,2) � −Ψ(2,1).
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Figure 2.5 – The joint wave function of two electrons, for (a) antisymmetric spatial part (solid line)
and symmetric spin state (arrows), and (b) symmetric spatial part and antisymmetric
spin state. Dashed lines show the individual wavefunctions. Retrieved fromRef. [16].

The joint wave function can be written as the product of functions of space and
spin coordinates, given by

Ψ(1,2) � φ(r1,r2)χ(s1,s2).

In this way, when the spatial part φ of the wave function is symmetric (antisymmetric),
the spin part χ must be antisymmetric (symmetric), as illustrated in Fig. 2.5. The
antisymmetric spin state is characterized by spin number S � 0, and it has only one
possible configuration (mS � 0). This state is called spin singlet, and it is given by

χS �
1√
2
[| ↑1 , ↓2〉 − | ↓1 , ↑2〉] , (2.21)

where | ↑1 , ↓2〉 represents the state where the first electron has spin s � 1/2 and the
second one has s � −1/2. On the other hand, the symmetric spin state has S � 1, and
three different possible configurations (mS � 1, 0, −1), and it is called spin triplet, given
by

χT � | ↑1 , ↑2〉;
1√
2
[| ↑1 , ↓2〉 + | ↓1 , ↑2〉] ; | ↓1 , ↓2〉. (2.22)

The total wave functions for the singlet and triplet cases are written as

ΨS �
1√
2

[
ψa(r1)ψb(r2) + ψa(r2)ψb(r1)

]
χS

ΨT �
1√
2

[
ψa(r1)ψb(r2) − ψa(r2)ψb(r1)

]
χT .

(2.23)

Notice that both expressions satisfy the antisymmetric conditionΨS,T(1,2) � −ΨS,T(2,1).
The energies of the two possible states can be evaluated from the Hamiltonian operator
Ĥ ,

ES �

∫
Ψ∗SĤΨSd3r1d3r2

ET �

∫
Ψ∗TĤΨT d3r1d3r2,

(2.24)
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Figure 2.6 – Illustration of ferromagnetic (top) and antiferromagnetic (bottom) configurations.
Here, the spheres represent the atoms and the arrows represent the direction of the
magnetic moments.

and the energy difference between the two states is [16, 21]

ES − ET � 2
∫
ψ∗a(r1)ψ∗b(r2)Ĥψa(r2)ψb(r1)d3r1d3r2, (2.25)

where we assume that the spin parts of the wave function χS and χT are normalized.

Since the triplet and singlet states favor the alignment and anti-alignment of
spins, respectively, the spin-dependent term of the Hamiltonian can be parametrized
using the expression

Hex � −Jexn̂1 · n̂2, (2.26)

where n̂1 and n̂2 are the directions of the two spins, respectively, and Jex ≡ ES − ET is
the so-called exchange constant (or exchange integral), which defines the energy cost
of flipping the spin (and consequently, the magnetic interaction of the atomic bond).
Therefore, if Jex > 0, the triplet state is the ground state of the system and the energy
is minimized when n̂1 is parallel to n̂2. On the other hand, if Jex < 0 the singlet is the
ground state and the energy is minimized for n̂1 antiparallel to n̂2. The Heisenberg
model (named after Werner Heisenberg) generalizes this magnetic interaction for a
spin-lattice system by assuming that it applies between all neighbouring atoms, giving
rise to the Heisenberg Hamiltonian

Hex � −
1
2

∑
i , j

Jexi j n̂i · n̂ j , (2.27)

where J ex
i j is the exchange constant between the ith and jth spins. The factor of 1/2 is

included because the summation runs over each pair of spins twice. Within this model,
J ex > 0 indicates a ferromagnetic interaction, where all spins in the lattice tend to align
along the same direction [see Fig. 2.6], while J ex < 0 indicates a antiferromagnetic
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Figure 2.7 – Illustration of (a) direct exchange and (b) superexchange between chromium atoms
in the van der Waals magnetic material CrI3. Adapted from Ref. [18].

interaction, where the spins tend to align antiparallel. Usually, the energy contribution
of exchange interaction is a few orders of magnitude higher than that of the dipolar
interaction, and can therefore stabilize long-range magnetic order at much higher
temperatures.

Note, however, that Eq. (2.25) was derived for the system of two electrons, but
such calculation can be much more complicated to solve for the case of many-electron
atomic spins, where competing exchange interactions may coexist with different signs of
coupling. In addition, in some cases, the exchange coupling between two magnetic ions
may not be given by the direct overlap of their electronic orbitals, as considered above,
but mediated through a non-magnetic ion, in the so-called superexchange interaction
[see, e.g., Fig. 2.7], which exchange calculations involve the electronic orbitals of the
ligand ion, and J ex depends sensitively on the interatomic separation, and on the bonding
angle between orbitals. Therefore, the exchange parameter is commonly calculated by
numerical methods, such as ab initio calculations []. In a general scenario, the exchange
Hamiltonian can be expressed as

Hex � −
1
2

∑
i , j

n̂iJi jn̂ j , (2.28)

with the tensorial exchange coupling

Ji j �


Jxx
i j Jx y

i j Jxz
i j

J yx
i j J y y

i j J yz
i j

Jzx
i j Jz y

i j Jzz
i j

 , (2.29)

which takes into account anisotropic interactions, and can be applied to different atomic
structures. Eq. (2.28) is reduced to Eq. (2.27) for the case of isotropic exchange coupling:
Ji j � Jexi j I, with I the identity matrix.

Let us now consider, for example, the case of uniform ferromagnetic interaction,
and that the angles between nearest neighbour spins are very small. In this case, we
can assume n̂i · n̂ j ≈ 1 − φ2

i j/2, where φi j is the angle between the ith and jth spins.
In the continuous limit, we can write φ2

i j ≈ |(ri j · ∇)m|2, where m � (mx ,my ,mz) is the
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magnetization function and ri j the distance vector connecting sites i and j. Therefore, in
the continuum approximation, the exchange Hamiltonian is given by the integral over
the sample volume

Hex � Aex

∫
V

[
(∇mx)2 + (∇my)2 + (∇mz)2

]
d3r, (2.30)

where the exchange stiffness coefficient, Aex, represents the strength of exchange
interactions per unit distance. In the International System of Units (SI), the exchange
stiffness is expressed in Joules per meter [J/m].

2.3.3 Dzyaloshinsky-Moriya interaction

In chiral magnetic materials, where space inversion symmetry is broken, the
indirect exchangemechanism that couples two atomic spins to a neighbor atomwith large
spin-orbit coupling (SOC) results in antisymetric terms in the exchangematrix [Eq. (2.29)].
The antisymetric (AS) exchange, commonly referred to as the Dzyaloshinskii-Moriya
interaction (DMI) [73, 88, 89], can be extracted from the exchange matrix as follows

JAS
i j �

1
2

(
Ji j − JT

i j

)
, (2.31)

and the DMI contribution to the magnetic Hamiltonian is given by

Hdmi � −
1
2

∑
i , j

n̂iJAS
i j n̂ j � −

1
2

∑
i , j

Di j · (n̂i × n̂ j), (2.32)

where Di j is the Dzyaloshinsky-Moriya (DM) vector defined as

Dx
i j �

1
2

(
J yz
i j − Jz y

i j

)
, D y

i j �
1
2

(
Jxz
i j − Jzx

i j

)
, Dz

i j �
1
2

(
Jx y
i j − J yx

i j

)
. (2.33)

The direction of the DM vector is perpendicular to the plane of the triangle composed of
the two magnetic sites and the atom with a large SOC, as illustrates in Fig. 2.8.

Figure 2.8 – Illustration of a DMI generated by (a) indirect exchange for the triangle composed of
two atomic spins, n̂1 and n̂2, and an atomwith a strong SOC, and (b) at the interface-
Such topological protection increases the stability between a ferromagnetic metal
(grey) and a metal with a strong SOC (blue). The DMI vector D12 is perpendicular
to the plane of the triangle composed of two magnetic sites and an atom with a
large SOC. Adapted from Ref. [19].
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In contrast to the symmetric exchange interaction, the DMI is characterized by a
vectorial product of the magnetic moments and the tendency is to couple the two spins
perpendicularly. As we shall see in Sec. 2.5, the competition of the symmetric exchange
and DM interactions favors the rotation of magnetization at short length scales, giving
rise to chiral spin structures such as cycloids and magnetic skyrmions. The orientation
of the DM vector, therefore, defines the plane in which the magnetization rotates and
whether it rotates clockwise or counterclockwise. The DMI is also responsible for the
effect of weak ferromagnetism observed in some antiferromagnets, such as MnF2 and
MnCO3, where the spins may be canted away from the antiferromagnetic axis by about
1o, which results in a small ferromagnetic moment in the perpendicular direction.

In the case of magnetic thin filmswith an interfacially inducedDMI (case that will
be considered in some parts of this thesis), the contribution of DMI to the Hamiltonian
can be expressed in the continuous limit as [90]

Hdmi � −
∫

V
D

[
mx∂x mz − mz∂x mx + my∂y mz − mz∂y my

]
d3r, (2.34)

where D represents the strength of DM interaction and m � (mx ,my ,mz) is the magneti-
zation function. In the SI, D is expressed in Joules per square-meter [J/m2].

2.3.4 Magnetocrystalline anisotropy

The magnetocrystalline anisotropy arises from the interaction of atomic spin
orbitals with the local crystal environment, which tends to orient the magnetization
along certain crystallographic axes (known as easy magnetization axes). The form of
the anisotropy and its magnitude, therefore, depend on the crystal symmetry and
the chemical composition of the material. For example, a pure iron crystal exhibits
easy axes along the 〈100〉 crystallographic directions and hard axes along 〈111〉 and
〈110〉, as illustrated in Fig. 2.9. The sources of magnetocrystalline anisotropy can be
separated into two distinct cases: the Single-ion anisotropy (SIA) and the Two-ion
anisotropy (TIA). The SIA originates from the electrostatic interaction of the orbitals
containing the valence electrons with the crystal-field created by the neighbouring
atomic sites. The crystal-field, combinedwith the spin-orbit interaction, tends to stabilize
a particular orbital and forces the magnetic moment to align itself along well-defined
crystallographic axes. The SIA contribution to the magnetic Hamiltonian can be writen
as

Hsia �
∑

i

n̂iAin̂i , (2.35)

with the SIA matrix given by

Ai �


Axx

i Ax y
i Axz

i
Ayx

i Ay y
i Ayz

i
Azx

i Az y
i Azz

i

 . (2.36)
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Figure 2.9 – (a) Definition of magnetic moment direction with respect to the crystallographic
axes in a cubic system. (b) Example of the anisotropy energy surface for pure iron
crystal, which exhibits easy axes along the 〈100〉 crystallographic directions and
hard axes along 〈111〉 and 〈110〉. Adapted from Ref. [20].

In the simple case of uniaxial anisotropy along ẑ direction, the only non-zero element of
SIA matrix is Azz

i , and Eq. (2.35) becomes

Hsia �
∑

i

Azz
i (n̂i · ẑ)2. (2.37)

The TIA contribution reflects the anisotropy of the dipole–dipole interaction (DDI)
as well as the anisotropic exchange between magnetic sites. As discussed in Sec. 2.3.1,
the DDI tends to align the magnetic moments in a head-to-tail configuration, which
preferential direction is sensitive to the atomic distances in the crystal structure. On the
other hand, the contribution of the anisotropic exchange to the magnetic Hamiltonian
was already included in the exchange matrix discussed in Eq. (2.29), which anisotropic
part can be further separate as

Jani
i j �

1
2

(
Ji j + JT

i j

)
− Ji jI , (2.38)

where Ji j �
1
3Tr(Ji j) represents the isotropic exchange interaction andI is the identityma-

trix. The anisotropic exchange is crucial to stabilize long-range order in two-dimensional
magnetic materials, such as in the few-atom-thick van der Waals heterostructures.

In the continuum limit, the energy contribution of a uniaxial anisotropy, with an
easy axis û, can be expressed as

Hani � −
∫

V
K (m · û)2 d3r, (2.39)

where K is the anisotropy constant, often expressed in units of Joule per cubic-meter
[J/m3], and m is the magnetization function.
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2.4 Magnetic ordering

When the magnetic moments are strongly coupled, long-range magnetic order
may arise throughout the material. For example, let us consider the case where the
interaction between magnetic moments is dominated by the ferromagnetic exchange.
The Weiss model [21] describes the spontaneous magnetization induced due to the
ferromagnetic exchange by approximating the Heisenberg Hamiltonian [Eq. (2.27)] in
terms of an effective molecular field Bmf, where the exchange Hamiltonian for the ith

spin becomes
H i

ex � −n̂i ·
∑

j

Jexi j n̂ j ≡ −n̂i · µBmf. (2.40)

The assumption underlying this approach is that all magnetic ions experience the same
molecular field (stemming from the exchange interaction with neighbouring spins),
which may be not applicable in the case of strongly nonuniform magnetization profiles
and at temperatures close to a magnetic phase transition, but it is enough to demonstrate
the spontaneous magnetization that emerges from the coupling between the magnetic
moments. The molecular field approximation allows us to treat the exchange coupling
analogous to the Zeeman interaction [Eq. (2.11)] between the magnetic moment and an
external applied field, so the total Hamiltonian becomes

H � −µ
∑

i

n̂i · (B + Bmf), (2.41)

where B is the external magnetic field. We are now able to treat this problem as if the
magnetic moments were independent parts (i.e., there is no interaction between them),
which is known as a paramagnetic system.

In a paramagnetic system, there is no long-range magnetic order in the absence
of external fields, but an applied magnetic field induces a magnetization which aligns
parallel with the field direction. The induced magnetization M in the system is deter-
mined by the average moment along the field direction (say B � Bẑ) M � n〈µz〉, where
n is the number of magnetic ions per unit volume. The expected value of 〈µz〉 as a
function of field and temperature T can be obtained by means of statistical mechanics
calculations [16, 21], which results in the following expression for the magnetization of
the paramagnetic system

M
Ms

� BJ(y), (2.42)

where BJ is the Brillouin function [21] and

y �
g JµBJB

kBT
, (2.43)

with g J and J the g-factor and the total quantum number associated with the magnetic
moment, respectively [see Sec. 2.1].
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Figure 2.10 – (a) The graphical solution of Eqs. (2.42) and Eq. (2.44) for B � 0. A non-zero
solution exists only for T < TC. (b) The spontaneous magnetization as a function
of temperature. The magnetization is zero for T ≥ TC (the magnetic state is
paramagnetic) and is non-zero for T < TC (the magnetic state is ferromagnetic).
Adapted from Ref. [21].

Let us now include the molecular field in the paramagnetic system, for what we
replace B by B + Bmf in Eq. (2.43). Since the molecular field measures the effect of the
ordering of the system, one can assume that Bmf � λM, where the constant λ defines
the strength of the molecular field as a function of the sample magnetization. Therefore,
for λ , 0, Eq. (2.43) can be rewritten as

M
Ms

�
kBT y

g JµBJλMs
− B
λMs

. (2.44)

The solution for thismodel is obtained by solving simultaneously Eq. (2.42) and Eq. (2.44).
These equations can be solved graphically. The case of B � 0 is illustrated in Fig. 2.10 (a).
Notice that, for high temperatures, the only simultaneous solution of Eqs. (2.42) and
(2.44) is at y � 0, which implies M � 0. However, below a critical temperature,
two new solutions emerge: M/Ms � ±M0, where M0 is some non-zero value that
grows when the material is cooled, as illustrated in Fig. 2.10 (b). The material thus
becomes magnetized, even in the absence of an external field, which is the characteristic
of long-range ferromagnetic order. The transition temperature, known as the Curie
temperature TC, is obtained when the gradient of Eq. (2.44) is equal to that of the
Brillouin function [Eq. (2.42)] at the origin. For the case of small y, the Brillouin function
can be approximated as BJ(y) ≈ (J + 1)y/3J, which results in the following expression
for the Curie temperature

TC ≈
g JµB(J + 1)λMs

3kB
�

nλµ2

3kB
, (2.45)

where Ms � n g JµBJ and µ � g JµB
√

J(J + 1) [see Sec. 2.1]. The Weiss’s molecular field
theory was the first mean field theory to describe a magnetic phase transition, and one
that remains useful today.
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Figure 2.11 – (a) Crystal structure of MnSi with B20 cubic symmetry. (b) Phase diagram of MnSi
as a function of temperature T and field B. (c-e) Illustration of chiral magnetic
states: the helical phase (c), the conical phase (d), and skyrmion phase (e). Adapted
from Refs. [7, 8, 22, 23].

2.5 Chiral magnetic states

The competition between the symmetric exchange and DM interactions in chiral
magnetic materials favors the rotation of magnetization at short length scales. This gives
rise to the so-called chiralmagnetic states (CMS). A common example of a chiral magnet
is the MnSi (manganese silicide) compond, which crystallizes in the B20 structure that
lacks inversion symmetry, as illustrated in Fig. 2.11 (a). Therefore, let us now consider
the MnSi as an example to illustrate the CMS. The magnetic phase diagram of MnSi as
a function of applied magnetic field and temperature is shown in Fig. 2.11 (b), where
the magnetic phases were identified by neutron scattering experiments [7]. The most
familiar phases in Fig. 2.11 (b) are the field-polarized and paramagnetic ones, which
are also observed in basic ferromagnetic materials, as discussed in the previous section.
However, three different CMS emerge due to DM interaction in MnSi, which are: the
helical phase, the conical phase and the skyrmion phase (also known as the A-phase).

For small, or in the absence of applied magnetic fields, the equilibrium spin-
configuration below the Curie temperature in MnSi is the helical phase. In this state,
the magnetization precesses around an easy axes q determined by the crystalline



2.6. THE MAGNETIC SKYRMION 60

anisotropies [91], where the local magnetization is perpendicular to the helix pitch. The
helical phase is illustrated in Fig. 2.11 (c). Upon increasing the external magnetic field,
the system transitions from the helical to the conical phase, where the magnetization
now precesses around the magnetic field direction, with a non-zero magnetization
component parallel to the field, as illustrated in Fig. 2.11 (d). At higher fields, the system
finally saturates in the field-polarized state. The skyrmion phase, on the other hand,
appears at intermediate magnetic field values and at temperatures just below TC. At
this phase, the magnetization swirls locally, forming some kind of magnetic whirlpools,
known as skyrmions, where the magnetization at the center of each skyrmion is flipped
from the background magnetization, as illustrated in Fig. 2.11 (e).

2.6 The magnetic skyrmion

Extended lattices of magnetic skyrmions were first observed in B20-type bulk
systems, such as MnSi, but they are also present in thin film chiral magnets [25], where
the DMI is created at the interface between the magnetic thin film and a heavy metal
material. The sense at which the magnetization rotates differ between the two cases.
The Néel-type skyrmion texture [Fig. 2.12 (a)] is stabilized in thin magnetic films with
interface induced DMI, while the Bloch-type skyrmions [Fig. 2.12 (b)] are found in bulk
materials. The different rotation senses of the magnetization in such systems are defined
by the direction of the DM vector [see Sec.2.3.3], which in the bulk case points along the
vector connecting the magnetic moments, r̂i j , while in the case of interface induced DMI
it points along n̂ × r̂i j , where n̂ is the unit vector normal to the interface.

2.6.1 Topological properties

A particularly interesting property of magnetic skyrmions is the fact that they
are topologically protected objects, which means that the skyrmion texture can not be
destroyed into a trivial solution by a continuous deformation. In order to determine

Figure 2.12 – (a) Néel-type skyrmion, observed in thin film chiral magnets. (b) Bloch-type
skyrmion, observed in bulk chiral magnets. In both cases, the spin at the center of
the skyrmion points down, while the spins at the perimeter point up. Retrieved
from Ref. [24].
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Figure 2.13 – The topological presentation of a magnetic phase by wrapping each individual
spin onto a unit sphere, for (a) ferromagnetic state, (b) magnetic vortex and (c)
magnetic skyrmion. The topological charge Q counts how many times the spins
wind around the unit sphere.

whether a given spin structure is a skyrmion one needs to calculate the topological
charge Q, defined as

Q �
1

4π

∫
m ·

(
∂xm × ∂ym

)
dxdy , (2.46)

where m is the magnetization function. The topological charge, also known as the
skyrmion number, counts how many times the spins wind around the unit sphere,
as illustrated in Fig. 2.13. The skyrmions are characterized by an integer topological
charge, and can not be continuously deformed into, e.g., the ferromagnetic state, where
Q � 0. Such topological protection increases the stability of the magnetic skyrmions
in such a way that they are able to move throughout the magnetic material without
losing their shape, similar to vortices in superconductors [92], property that makes them
promising candidates for technological applications such as magnetic memory devices.
However, the fact that spins are arranged in a discrete lattice rather than a continuous
one, makes it possible for the skyrmions to be destroyed in a first-order phase transition,
characterized by an energy barrier that determines the stability of the skyrmion phase.
Generally, skyrmions are highly stable magnetic objects and can be observed even at
room temperature in some materials [77].

2.6.2 Helicity and vorticity

The skyrmion spin-texture can be characterized by assuming the rotational
symmetry of the magnetization around the skyrmion core, so we can write

m(r,φ) � sinΘ(r) cosΦ(φ)x̂ + sinΘ(r) sinΦ(φ) ŷ + cosΘ(r)ẑ , (2.47)

where Θ(r) and Φ(φ) give the direction of the magnetization at the position r �

r cosφx̂ + r sinφ ŷ, as illustrated in Fig. 2.14 (a). The center of the skyrmion coincides
with the origin of the coordinate system (r � 0). Note that, due to the symmetry, the
value of Φ does not depend on the distance r, and Θ is independent on the angle φ. By
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Figure 2.14 – (a) Illustration of coordinate system considered inEq. (2.47). (b) Skyrmion structures
for different vorticities N and helicities γ. The arrows indicate the direction of the
in-plane spin component. Adapted from Ref. [25].

substituting Eq. (2.47) into Eq. (2.46), we obtain

Q �
1

4π

∫ ∞

0
dr

∫ 2π

0
dφ

dΘ
dr

dΦ
dφ

sinΘ(r) � 1
4π

[
cosΘ(r)

] r�∞
r�0

[
Φ(φ)

]φ�2π
φ�0 . (2.48)

If we assume that the spins point up at r →∞while they point down at r � 0 (skyrmion
core), we obtain

[
cosΘ(r)

] r�∞
r�0 � 2. The skyrmion structure is then classified by the

definition of two parameters: (i) the skyrmion vorticity, represented by the integer N ,
which counts how many times, and the sense at which Φ rotates in a full cycle from
φ � 0 to 2π, defined as

N �

[
Φ(φ)

]φ�2π
φ�0

2π , (2.49)

such that the topological charge becomes Q � N, and (ii) the skyrmion helicity,
represented by the phase γ, which defines the value of Φ at φ � 0, i.e.,

Φ(φ) � Nφ + γ. (2.50)

Fig. 2.14 (b) shows the skyrmion structures obtained for different values of N and γ.
Notice that the Néel-type skyrmion [Fig. 2.12] is represented by γ � 0 or π while the
Bloch-type skyrmion is represented by γ � ±π/2. The case where N � −1 is also known
as the anti-skyrmion.
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2.7 Skyrmions in motion

2.7.1 Spin-transfer-torque

When a spin polarized current is applied to the magnetic material, it can drive the
magnetic skyrmions throughout the sample. A spin-polarized electric current is obtained
when most of the spins of the moving electrons are aligned in the same direction, as
illustrated in Fig. 2.15 (a). Therefore, a spin-polarized current does not only carry charge,
but also angular momentum, and its interaction with the localized magnetic moments
results in a torque on the magnetization, called a spin-transfer-torque (STT). The STT
in a thin magnetic film can be induced in two different scenarios: (i) by an in-plane
spin-polarized current (CIP) applied into the magnetic layer [see Fig. 2.15 (b)], or (ii) by
an electric current applied into an adjacent heavy metal (HM) layer, which due to the
spin Hall effect gives rise to a spin-polarized current perpendicular to the film plane
(CPP) [93–96] [see Fig. 2.15 (c)]. In both scenarios, the effects of STT to the magnetization
dynamics can be included into the LLG equation [Eq. (2.17)] as follows. For the CIP
scenario, the Zhang and Li STT term [97]

τZL �
b

1 + α2

[
m × (m × (j · ∇)m) + (β − α)m × (j · ∇)m

]
, (2.51)

is added to the right hand side of the LLG equation, where j is the current density; β is
the non-adiabatic factor; α is the Gilbert damping factor and b � PµB/eMs(1 + β2), with

Figure 2.15 – (a) Illustration of spin currents. When most of the spins of the moving electrons
are aligned in the same direction, the current is said to be spin polarized. (b-c)
Illustration of spin-polarized currents in a ferromagnet (FM)-heavy metal (HM)
heterostructure, for (b) in-plane spin-polarized current (CIP) applied into the FM
layer, and (c) spin-polarized current perpendicular to the film plane (CPP), induced
by an electric current applied into the HM layer. Adapted from Refs. [26, 27].
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P the polarization of the current density, µB the Bohr magneton, e the electron charge,
and Ms the saturation magnetization. On the other hand, in the CPP scenario the electric
current applied into the HM layer results in a spin current injected into the magnetic
film along the out-of-plane direction, withmp � −sgnθSH(ẑ × ĵhm) the orientation of the
injected spins [93, 94, 98, 99], where θSH is the spin-Hall angle characteristic of the heavy
metal and jhm is the current density flowing through the HM layer. In this situation, the
STT is described by the Slonczewski term [100, 101]

τSL �
1

1 + α2
jz~P

2eMs d
[
m × (mp ×m) + αm ×mp

]
(2.52)

where d is the thickness of the magnetic layer and jz � θSH jhm the spin current density
induced along the out-of-plane direction.

2.7.2 Skyrmion Hall effect

When charged particles move in the presence of a perpendicular magnetic
field, they experience a transverse deflection, as a result of the Lorentz force [16], and
eventually accumulate at the sample edges, thus creating a voltage difference across
the sample. This effect is known as the Hall effect, and it is named after the American
physicist Edwin Hall, who first observed this phenomenon in 1879 [102]. Interestingly,
a similar effect occurs for magnetic skyrmions, where their topological, rather than
electrical charge causes them to travel with curved trajectories in the presence of applied
currents. When a spin-polarized current is applied into the magnetic material, it drives
the skyrmion by means of the spin-transfer torque mechanism, as discussed in the
previous section. The electrons are deflected by the Lorentz force due to the emergent
magnetic field of the skyrmion, while the skyrmion experiences a curved trajectory,
where the velocity of the skyrmion has a component perpendicular to the electron
flow, as illustrated in Fig. 2.16 (a). Several studies have demonstrated the so-called
skyrmion Hall-effect (SkHE) [29, 103]. For instance, Fig. 2.16 (b) shows experimental
observations of magnetic skyrmions in a Ta/CoFeB/TaOx trilayer by magneto-optical
Kerr effect (MOKE) microscopy [29]. The experiment consists of applying spin-polarized
current pulses to a thin-film magnetic device containing several skyrmions. The applied
current causes the skyrmions to accumulate at the edge of the sample, similar to the
charged particles in the classical Hall-effect. The side of the sample at which skyrmions
accumulate depends on the sign of the topological charge Q [Eq. (2.46)]. Fig. 2.16 (c)
shows the trajectory of an isolated skyrmion after applying several current pulses.
Observe that the skyrmion trajectory is characterized by a Hall-angle with respect to the
electron flow direction, defined as

θsk � arctan
( Ûy
Ûx

)
, (2.53)
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Figure 2.16 – (a) Illustration of the skyrmion Hall effect, the skyrmion experience a curved
trajectory with respected to the electron flow. (b) MOKE microscopy images
demonstrating skyrmion (Q � +1) and anti-skyrmion (Q � −1) accumulation
at the edges of the device. (c) Skyrmion motion after applying several current
pulses. The skyrmion trajectory is illustrated in the bottom panel. Adapted from
Refs. [28, 29].

where Ûr � Ûxx̂ + Ûy ŷ is the drift velocity of the skyrmion. In order to derive the skyrmion
velocity and understand the origin of the SkHE, one can analyze the dynamics of an
isolated skyrmion based on the Thiele equation.

2.7.3 Thiele equation for skyrmion motion

The Thiele equation describes the dynamics of the center-of-mass of the skyrmion
by assuming a rigid bodymotion of the spin texture [93, 95, 96, 104, 105]. The translational
motion of the skyrmion is obtained by projecting the LLG equation [Eq. (2.17)], with
spin-transfer-torque included [Eqs. (2.51) and (2.52)], onto the relevant translational
modes [104]. The magnetization profile for the Néel skyrmion is considered to follow
the general form of Eq. (2.47) and the LLG equation is integrated over the skyrmion area.
The resultant dynamical force equation can be derived for both CIP and CPP scenarios.
The Thiele equation for the CIP scenario reads

G × (ν − Ûr) +D(βν − αÛr) − ∇V(r) � 0, (2.54)

where G � G ẑ � 4πQẑ is the gyromagnetic coupling vector, with Q the topological
charge [Eq. (2.46)]; Ûr � Ûxx̂ + Ûy ŷ is the drift velocity of the skyrmion; ν � νx x̂ + νy ŷ is
the velocity of the conduction electrons associated to the spin-polarized current; β is
the non-adiabatic factor; α is the Gilbert damping factor; V is the potential stemming
from external forces, boundaries or impurities, and D represents the dissipative tensor,
with componentsDi j �

∫
d2r∂im · ∂jm. The first term in Eq. (2.54) is also known as the
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Magnus force term due to the resemblance with the force generated when a spinning
body travels through a viscous fluid, which acts perpendicular to the velocity of the
body.

In the case where a spin-polarized current is applied along the x direction, i.e.
νy � 0, the Thiele equation can be separated into its two components, which for the case
of V � 0 yields

Ûx �

(G2 +D2αβ

G2 + α2D2

)
νx , (2.55a)

Ûy �

(
GD

α − β
G2 + α2D2

)
νx . (2.55b)

The above equations describe the velocity of the center-of-mass of the skyrmion due
to the applied current in the absence of external forces and impurities, where the
skyrmion velocity is constant for a fixed applied current. Notice that the skyrmion
undergoes a transverse motion, Ûy , 0 (when α differs from β), because it carries a
non-zero skyrmion number (G , 0). The skyrmion Hall-effect therefore originates from
the effective gyrotropic force related to the topological character of the skyrmion.

Similarly, for a Néel skyrmion driven by the CPP scenario, the skyrmion motion
is described by the modified Thiele equation [93, 95, 96]:

−G × Ûr − αDÛr + 4πBjhm − ∇V(r) � 0, (2.56)

where jhm is the current density flowing through the heavy metal, which gives rise
to a spin-polarized current perpendicular to the plane. The parameter B quantifies
the efficiency of the spin-Hall effect. If we consider jhm � jhmx̂. For the case of V � 0,
Eq. (2.56) yields

Ûx �
αD

G2 + α2D2 4πB jhm, (2.57a)

Ûy �
G

G2 + α2D2 4πB jhm. (2.57b)

Note that, for α � 1, the Magnus term dominates Ûy � Ûx, and the relevant motion is
perpendicular to the current direction.

The skyrmion Hall-angle is therefore obtained by substituting Eqs. (2.55a) and
(2.55b) (in case of CIP) or Eqs. (2.58) and (2.59) (in case of CPP) into Eq. (2.53), which
yields

θsk � arctan
(GD(α − β)
G2 + α2D2

)
, (2.58)

for the case of CIP, and

θsk � arctan
(
G
αD

)
, (2.59)

for the CPP scenario. Notice that θsk is a constant, determined by thematerial parameters
and skyrmion profile.
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2.8 Antiferromagnetic skyrmion

Antiferromagnetic (AFM) skyrmions are expected to combine the advantages
of antiferromagnets with those of skyrmions regarding spintronic applications. AFM
skyrmions have zero net topological charge and simulations of their current-induced
motion have shown that accordingly they move straight along the direction imposed
by the applied current [30, 94, 106, 107], i.e., the AFM skyrmion does not experience a
Hall-effect. This is considered advantageous for applications, because as opposed to
ferromagnetic skyrmions their antiferromagnetic counterparts are not driven towards
the boundary of the hosting magnetic structures, where they can collapse. Additional
benefits arise from their antiferromagnetic nature, e.g. their insensitivity to parasitic
stray fields [30]. The AFM skyrmion comprises a two-sublattice structure, where each
sublattice (indexed 1 and 2) contains half of the spins of the system and has the opposite
magnetization of the other sublattice [see Fig. 2.17 (a)]. In this way, the topological
numbers projected to each sublattice satisfy Q1 � −Q2. The opposing topological index
of two sublattices causes the exact cancellation of the Magnus force in the presence of
spin-polarized current [Fig. 2.17 (b)], so the antiferromagnetic skyrmion moves along
the direction of the applied current.

The trajectory of the center-of-mass of the AFM skyrmion can also be described
in the CPP scenario within the modified Thiele equation [Eq. (2.56)] by assuming the
cancellation of the Magnus force, i.e., G � 0. In this case, assuming jhm � jhmx̂, the
Thiele equation for the AFM skyrmion reads

−αD Ûx + 4πB jhm −
dV
dx

� 0, (2.60)

and Ûy � 0. Notice the velocity of the AFM skyrmion driven by a current density is
inversely proportional to the damping factor α, and the AFM skyrmion can move much

Figure 2.17 – (a) Illustration of AFM skyrmion. (b) The opposing topological charges of two
sublattices causes the exact cancellation of the Magnus force in the presence of
spin-polarized current. Adapted from Ref. [30].
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faster than the FM one for weak damping, possibly reaching km/s while remaining
stable [30, 94, 106–108].

2.9 Spin waves

The strong correlation between the magnetic moments not only leads to mag-
netic order such as ferromagnetism and topological spin-textures, but also allows the
propagation of magnetic excitations. When a magnetic moment is excited, e.g., by
some oscillating magnetic field, the neighbouring magnetic moments will also ’feel’ the
oscillation through the magnetic coupling, such as the exchange interaction, leading to
a collective excitation that propagates as a wave in the crystal lattice. In 1930 Felix Bloch
showed that such excitations, which he called spin waves, dominate the magnetic ther-
modynamics at low temperatures [52]. Furthermore, a quantum formulation shows that
spin excitations are quantized, and the quanta of spin waves are calledmagnons [32]. In
this thesis, we focus on the semiclassical representation of spin waves in a ferromagnet.

In order to review the basic properties of spin waves, let us now consider the
simple case of a linear chain of semiclassical spins interacting via nearest-neighbour
ferromagnetic exchange, as illustrated in Fig. 2.18 (a). The magnetic Hamiltonian of the
ith spin-site is given by

Hi � −JexS2 (n̂i · n̂i+1 + n̂i · n̂i−1) − µB · n̂i , (2.61)

where B is the external applied field. A magnetic excitation in the spin-system will
induced a precession of themagneticmoments around the effective fieldBeff

�
1
µ∂Hi/∂ni

[see Sec. 2.2]. Consider B � B0 ẑ such that the magnetic moments saturate along the ẑ
direction. The spin dynamics can be described by the Landau-Lifshitz equation [see
Eq. (2.13)], which for the in-plane spin components results in

dnx
i

dt
� −γ

[
n y

i (B
eff)z − nz

i (B
eff)y

]
, (2.62a)

dn y
i

dt
� −γ

[
nz

i (B
eff)x − nx

i (B
eff)z

]
. (2.62b)

Substituting the effective field into Eq. (2.62a), it becomes

dnx
i

dt
� −

γ

µ

[
n y

i (−JexS2(nz
i+1 + nz

i−1) − µB0) − nz
i (−JexS2(n y

i+1 + n y
i−1))

]
. (2.63)

Considering that the amplitude of the spin excitation is small, we linearize this equation
by assuming nx ,n y � nz ≈ 1, which results in

dnx
i

dt
≈ γB0n y

i −
γ JexS2

µ

[
−2n y

i + n y
i+1 + n y

i−1
]
. (2.64)
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Figure 2.18 – (a) Illustration of linear chain of spins in the ferromagnetic ground state. (b) Side
and (c) top views of spin wave in the linear chain of spins. (d) Dispersion relation
for spin waves in a linear chain. The inset shows a zoom near the origin (red circle),
where ka � 1. Adapted from Ref. [31].

The equation above shows that the movement of a spin at any location is coupled with
the movement of neighboring spins, thus indicating that a collective motion is induced
when we have a spin excitation. Therefore, as a possible solution for Eq. (2.64), one can
consider that the magnetic excitations assume the form of harmonic travelling waves

nx
i � Ax e i(kxi−ωt), (2.65a)

n y
i � Ay e i(kxi−ωt), (2.65b)

where Ax and Ay are the amplitudes of the spin oscillation, with Ax ,Ay � 1. Here, xi

is the position of the ith spin-site; ω is angular frequency and k is the wavenumber.
Substituting that into Eq. (2.64), we obtain

−iωAx � Ay

[
γB0 −

γ JexS2

µ

(
−2 + e ika

+ e−ika
)]
, (2.66)

wherewe used xi+1−xi � a and xi−1−xi � −a, with a the lattice constant [see Fig. 2.18 (a)].
Eq. (2.66) can be rewritten as

iωAx � −Ay

[
γB0 +

2γ JexS2

µ
(1 − cos ka)

]
. (2.67)

Similarly, doing the same analysis for Eq. (2.62b) results in

iωAy � Ax

[
γB0 +

2γ JexS2

µ
(1 − cos ka)

]
. (2.68)

Note that Eqs. (2.67) and (2.68) can be rewritten in the matrix form
iω −

[
γB0 +

2γ JexS2

µ (1 − cos ka)
][

γB0 +
2γ JexS2

µ (1 − cos ka)
]

iω


[
Ax

Ay

]
� 0, (2.69)
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Figure 2.19 – Demagnetization effects to the FMR frequency (in CGS units) for different shapes
of the magnetic sample. The magnetic field direction is indicated by the black
arrow. Retrieved from Ref. [32].

which solution is obtained by equating the main determinant to zero, from where we
obtain the angular frequency

ω � γB0 +
2γ JexS2

µ
(1 − cos ka) . (2.70)

This equation describes the relation between the spin wave frequency ω and the
wavenumber k, and it is called dispersion relation. Using this solution into Eqs. (2.67)
and (2.68), we obtain Ax � iAy ≡ A0, and the real part of the spin wave solution becomes

nx
i � A0 cos(kxi − ωt), n y

i � A0 sin(kxi − ωt). (2.71)

Fig. 2.18 (b) and (c) illustrates the spin wave in the linear chain of spins, with wavelength
defined as λ � 2π/k. Notice that, for k � 0 all spins precess in phase and there is no
contribution from the exchange energy, i.e., ω0 � ω(k � 0) � γB0. This is known as
the magnetic resonance frequency, or zero-momentum spin wave (magnon) mode. As
the wavenumber increases, the phase difference of precession for neighboring spins
increases and so does the exchange energy. In the limit of ka � 1, Eq. (2.70) becomes

ω ≈ ω0 +
γ Jexa2S2

µ
k2, (2.72)

and the spin wave frequency has a quadratic dependence on the wavevector. Fig. 2.18 (d)
shows the dispersion relation for the spin waves in a linear chain, where the inset
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shows the case of ka � 1. Generally, the spin wave dispersion can take different forms
depending on the material shape and magnetic interactions involved. For instance,
the effects of demagnetization fields to resonance frequency ω0 in bulk ferromagnetic
samples was derived by Charles Kittel [109], in the so-called Kittel equation

ω0 � γµ0 [H0 + (Nx − Nz)M]1/2
[
H0 + (Ny − Nz)M

]1/2
, (2.73)

where Nx , Ny and Nz are the diagonal components of the demagnetizing tensor, with z
corresponding to the direction of the applied field, and M is the sample magnetization.
The Kittel equation shows that the ferromagnetic resonance frequency (FMR), ω0,
depends on the sample shape and on the direction of the applied field, as illustrated in
Fig. 2.19.
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3
Numerical simulations

To simulate the magnetic states resulting from the collective interactions in
magnetic materials, one can make use of multiple numerical techniques. In this chapter,
we present the methods used for solving spin dynamics in different scales, as well as
the minimum energy path analysis used to calculate activation energies of magnetic
phase transitions.

3.1 Multiscale modeling

A multiscale approach for the magnetic system can be done by combining first-
principles (ab initio) simulations of the quantum origin of magnetic interactions with the
semiclassical atomistic spin-dynamics and micromagnetic simulations. First-principles
electronic structure calculations are based on the laws of quantum mechanics and
provide detailed insight into the origin of magnetic properties within the subnanometer
length scale, while the atomistic spin-dynamics rely on the Heisenberg spin model
to simulate the effective local moments of atomic sites. The micromagnetic model, on
the other hand, is applied in the case where magnetization changes over large length
scales, and the magnetic energy can be treated in the continuous approximation. Fig. 3.1
illustrates the time and length scales accessible by the different numerical methods used
to simulate the magnetic materials.

3.1.1 First-principles calculations

Ab initio calculations, based on density functional theory (DFT) approaches,
make use of the Hohenberg–Kohn–Sham (HKS) theory [110] to state that the total energy
of a system can be described by the electron density. For many materials the local spin
density approximation (LSDA) to the DFT is known to provide a reliable description of
the ground state atomic structure and electronic structure of the solid [111], from where
we are able to accurately infer the equilibrium lattice constants, as well as the localized
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Figure 3.1 – Schematic of time and length scales accessible by the different numerical methods
used to simulate the magnetic materials. The atomistic spin dynamics makes
the connection between the ab initio calculations and micromagnetic simulations.
Retrieved from Ref. [33].

spin moments and magnetic interactions between neighbouring spins. The method
consists in calculating the total energies of different magnetic configurations, and the
magnetic parameters between atomic sites are obtained by fitting these energies under
the supposition that the change in energy is only related to the magnetic interactions.
This procedure requires at least as many calculated magnetic configurations as the
number of parameters of the Hamiltonian [112]. Fitting these parameters is, however,
often very complicated and requires a case-by-case construction. Difficulties may arise,
for example, in the calculation of the electronic structure in some transition metal oxides,
where the conventional DFT-LSDA is not appropriate to describe the strong Coulomb
repulsion between 3d electrons localized onmetal ions and it can predict metallic ground
states instead of experimentally observed insulating ones [113, 114]. In this case, it is
necessary to go beyond the LSDA. An improved method is obtained by combining the
DFT-LSDA with the unrestricted Hartree-Fock (UHF) approximation in the so-called
LSDA+U method [115]. Ab initio calculations generally requires high computational
effort, and applications of such method are limited to short length scales, generally in
the order of several hundred atoms. In addition, thermal effects are typically difficult
to incorporate into standard DFT approaches and a semiclassical treatment of atomic
magnetic moments might be required. Standard software packages such as the VASP
(Vienna Ab-initio Software Package) [116] and the FLEUR (Full-potential Linearised
augmented plane wave in EURope) [117] are examples of codes that solve the HKS
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equations iteratively and make DFT calculations easily accessible. Other examples of
simulation packages that provide DFT calculations include ABINIT [118], Quantum
ESPRESSO [119], SIESTA [120], Wien2K [121], TB2J [122], among others. Fig. 3.2 (a)
shows the example of bonding charge distribution calculated by ab initio simulations
of the Van der Waals magnetic material CrI3, from where magnetic parameters can be
extracted.

3.1.2 Atomistic spin dynamics

In the nanometer to micrometre length scale, the magnetic parameters obtained
in the ab initio calculations can be incorporated onto a Heisenberg spin model with
effective local moments, where the Landau-Lifshitz-Gilbert (LLG) equation [Eq. (2.15)] is
solved numerically in order to describe the time evolution of the magnetic system. This
method is commonly called atomistic spin dynamics (ASD), and can solve the magnetic
state for different crystalline structures, with the resolution of a single atomic-site.
Fig. 3.2 (b) shows an example of crystalline structure considered in the ASD simulations,
where the magnetic interactions between neighbouring moments are extracted from the
ab initio electron density calculation.

The magnetic Hamiltonian that describes the spin system is given by the summa-
tion of energy contributions of the relevant inter-atomic magnetic interactions. For the
case of magnetic interactions discussed in Sec. 2.3, the Hamiltonian of the spin system
can be written as

H � Hdd +Hex +Hdmi +Hani +Hzeeman, (3.1)

which, for each magnetic moment µi � µn̂i , results in the effective field Beff
i �

1
µδH/δn̂i .

The spin-dynamics is then simulated by the numerical integration of the LLG equation.
The simplest integration scheme for the dynamical equation is the Euler method [123],
which updates the spin direction in discretized time steps, given by

n̂′i � n̂t
i + δt∆n̂t

i , (3.2)

where n̂′i represents the new spin direction after a single time step δt and ∆n̂t
i ≡

∂n̂t
i

∂t . An improved integration scheme can be obtained by higher order Runge-Kutta
methods [124]. For instance, the Heun’s solver [125], which falls into the Runge-Kutta
category, makes use of Euler’s iteration [Eq. (3.2)] as a predictor step before calculating
the revised spin position

n̂t+δt
i � n̂t

i +
δt
2

(
∆n̂t

i + ∆n̂
′
i

)
, (3.3)

where ∆n̂′i ≡
∂n̂′i
∂t . Notice, however, that one must ensure the conservation of the mag-

nitude of the spin, for example by the renormalization of the spin vector after each
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Figure 3.2 –Multiscale modeling. (a) Bonding charge distribution (purple clouds) calculated
by ab initio simulations of the Van der Waals magnetic material CrI3, from where
magnetic parameters can be calculated. (b) Example of possible crystalline structure
considered in the ASD simulations, where the spheres represent the magnetic
atoms and arrows are the effective magnetic moments. (c) Schematic illustration of
micromagnetic approach. The continuous magnetization function is discretized into
a grid of small blocks of volume ∆V (micromagnetic cells), each one carrying an
effective magnetic moment (cones) of magnitude Ms∆V . Adapted from Refs. [34, 35]

time step. Some integration methods, such as the semi-implicit scheme B (SIB) [126]
intrinsically preserve the spin length, and are commonly used for solving ASD simula-
tions. Simulation packages such as SPIRIT [38], VAMPIRE [127] and UppASD [128] are
examples of well-tested tools that provide atomistic spin dynamics and other important
functionalities beyond LLG simulations.

In principle, the LLG equation describes the motion of magnetic moments at
zero temperature. However, temperature-dependent simulations can be implemented
by the introduction of a stochastic thermal field Bth, which is added as a contribution
to the effective field acting on the localized spin-sites, i.e., Beff

i →
1
µδH/δn̂i + Bth

i . The
magnitude of the thermal field is obtained by the fluctuation-dissipation theorem, and
is given by

Bth
i (T,t) � ηi(t)

√
2D/δt � ηi(t)

√
2αkBT
γµδt

, (3.4)

where T is the temperature, kB is the Boltzmann constant, α is the Gilbert damping, γ is
the gyromagnetic ratio and ηi(t) is a Gaussian white noise that represents the thermal
fluctuations on each atomic site i. The ensemble average and variance of the thermal
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field satisfies 〈Bth
i (t)〉 � 0 and 〈Bth

ia (t)B
th
jb(t′)〉 � 2Dδi jδabδ(t − t′), respectively, where a ,b

indicate the components of the vector Bth
i . The stochastic LLG, as it is called, provides

equivalent results for the magnetic ground state as those obtained by Monte Carlo
methods [38].

3.1.3 Micromagnetic simulations

In the limit where the direction of the magnetic moments varies slowly along
the lattice sites, i.e., on a length scale much larger than the atomic distances, the
magnetic system can be expressed in terms of the magnetization function M(r,t)
[Eq. (2.16)]. In this case, the magnetic energy [Eq. (3.1)] is treated in the continuous
approximation, as discussed in Sec. 2.3. Themicromagnetic model, therefore, consists
of discretizing the continuousmagnetization function in a grid of small blocks of volume
∆V , called micromagnetic cells, each one carrying an effective magnetic moment of
magnitude Ms∆V . The micromagnetic cells are large enough to average several atomic
magnetic moments, but small compared to the characteristic length scale at which
the magnetization changes. Fig. 3.2 (c) illustrates the micromagnetic approach. The
spin-dynamics is then simulated by the numerical integration of the LLG equation,
as discussed in the previous section for the atomistic spin-dynamics. Notice, however,
that the discretization of the magnetization function implies that the derivatives of
M(r,t) have to be treated by finite-difference approximations [129]. The fact that the
micromagnetic model averages atomic moments in larger blocks makes it useful for
simulating large magnetic systems. Furthermore, the size of the micromagnetic cells can
be chosen according to the characteristic length scale atwhich themagnetization changes,
which makes micromagnetic simulations adaptable to different length scales. Several
software packages provide micromagnetic simulations, two of the most impactful and
widely known ones are MUMAX3 [129] and OOMMF [130]. Another option of open-
source code is the simulation package FIDIMAG [35], which provides both atomistic and
finite-difference micromagnetic simulations. Lastly, the atomistic model can interface
directly with micromagnetism by the implementation of adaptive finite-difference mesh,
which allows, e.g., the calculation of interface properties at the atomic level, while
treating the bulk of the material with a micromagnetic description [131].

The basic assumption of the micromagnetic framework is that the magnetic
system can be expressed in terms of a continuous magnetization function. Consequently,
the micromagnetic method is not, a priori, suitable for studying magnetic states that
fluctuate on small length scales, such as antiferromagnets and frustrated magnets.
Furthermore, even when magnetic states satisfy the continuous approximation, it is still
possible that transitions between states require a strong spatial variation ofmagnetization
during the process, which is the case, for example, with the creation and annihilation
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Figure 3.3 – (a) Illustration of energy path for the phase transition between two magnetic states.
The activation energy Ea is determined by the highest-energy configuration, or
saddle point (SP), along the transition. (b) Illustration of the GNEB initial guess
and the MEP connecting the two minima in the energy landscape. Adapted from
Ref. [36]

of magnetic skyrmions. In these situations, an atomistic model of the magnetic system
must be resorted to.

3.2 Minimum energy paths for magnetic phase transition

The stability of a magnetic phase can be estimated by calculating the activation
energy necessary to destroy such a configuration. The transition between two phases
can be driven, e.g., by thermal fluctuations, and the activation energy for the phase
transition is determined by the highest-energy configuration, or saddle point (SP), along
the minimum energy path (MEP) connecting the two magnetic states, as illustrated in
Fig. 3.3 (a) and (b). MEPs for magnetic phase transition can be numerically calculated
by the geodesic nudged elastic band (GNEB) method [132], which involves taking
some initial guess for the path connecting the two minima in the energy landscape
[see Fig. 3.3 (b)], and then using an iterative procedure to bring that to the nearest
MEP. Since transitions between magnetic states may require a strong spatial variation of
magnetization during the process, the GNEB method has to be treated in the atomistic
framework. Some simulation packages, such as SPIRIT [38] and FIDIMAG [35], have the
GNEB method implemented in their codes.

In the GNEB method, a path is represented by a discrete chain of magnetic
configurations, called "images" of the system, between the initial and final states. The
initial guess of the path is then represented by the set of images [M1,...,MQ], where Q
is the number of images along the path;Mν

� (n̂ν1 ,n̂
ν
2 ,...,n̂

ν
N) represents the magnetic
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configuration of the νth image of the system with N spins, and n̂i is the orientation of
the ith spin. In order to converge from the initial guess to the nearest MEP, the effective
force at each image is calculated by the negative energy gradient −∇Eν, where Eν is
the energy of the νth magnetic configuration and ∇i � ∂/∂n̂i . The force component
along the local tangent to the path is then substituted by an artificial spring force Fspring
between the images, forming an elastic band [see Fig. 3.4 (a)], which ensures uniform
distribution of the images along the path, while the energy gradient forces orthogonal
to the path tangents, F⊥, are applied, thus moving the images towards the minimum
energy position in a process termed nudging. The first and last images of the chain are
fixed and given by the local minima corresponding to the initial and final states. This
procedure is therefore called nudged elastic-band (NEB). Fig. 3.4 (a) illustrates the forces
acting on the NEB method, where the total force on the νth image reads

Fν � Fν⊥ + Fνspring. (3.5)

The force orthogonal to the path can be obtained by subtracting the component of the
energy gradient parallel to the tangent vector τ̂ν, i.e.,

Fν⊥ � −∇Eν + (∇Eν · τ̂ν) τ̂ν , (3.6)

and the spring forces are defined as follows

Fνspring � k(lν−1,ν − lν,ν+1)τ̂ν , (3.7)

where k is a spring constant and lν,µ is a measure of distance between images ν and
µ. In order to use the NEB method for spin systems, it is necessary to consider the
fact that spin lengths are constants. The configuration of a system of N spins therefore
contains N constraints on the magnitude of the vectors. The constrained problem can be
avoided by projecting the spin system on a curved space, where each spin vector n̂i is
represented by a point on a 2D unit sphere, S2. The spin configuration is then described
in the two-dimensional Riemannian manifold R �

∏N
i�1 S2

i , which corresponds to the
direct product of N unit spheres (S2

1 ,...,S
2
N). In this formalism, lν,µ denotes the geodesic

distance between images in the curved space, and can be written as

lν,µ �

√(
dν,µ1

)2
+ ... +

(
dν,µN

)2
, (3.8)

where
dν,µi � arccos

(
n̂νi · n̂

µ
i

)
(3.9)

is the geodesic distance for the ith spin between images ν and µ, and is determined by
the great-circle distance in the unit sphere S2

i [133]. This procedure is therefore called
geodesic-NEB.
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Figure 3.4 – (a) Illustration of nudged elastic-band method. Force vectors acting on the νth image
are indicated. (b) Schematic illustration of the projection of the tangent vector for a
single-spin system. Addapted from Refs. [37, 38]

The simplest estimate for the tangent vector is given by the forward-difference
between adjacent images

τ̂νFD �
M

ν+1 −Mν��Mν+1 −Mν
�� . (3.10)

Fig. 3.4 (b) illustrates the tangent vector for a single-spin system. Notice that, for the
GNEB method, τ̂νFD has to be projected onto the tangent space so that it correctly points
along the geodesic path. A given vector A � (A1,...,AN) in 3N dimensions can be
projected onto the tangent space by applying the projection operator PT [132], where

PTA �

(
AT1 ,...,A

T
N

)
, (3.11)

with
ATi � Ai − (Ai · n̂i) n̂i . (3.12)

The projected tangent vector is then written as

τ̂νproj � PT τ̂νFD, (3.13)

which needs to be re-normalized after projection, resulting in τ̂ν � τ̂νproj/|τ̂νproj |, as
illustrated in Fig. 3.4 (b). Moreover, an improved tangent estimate can be calculated by
using, e.g., both forward or backward difference of the two adjacent images, as discussed
in Ref. [134]. Finally, the resultant force acting on the νth image is obtained by projecting
Eq. (3.5), onto the tangent space

FνGNEB � PT
(
Fν⊥ + Fνspring

)
. (3.14)

Notice that, since the GNEB provides a discrete representation of the MEP, the
highest energy image may not be placed exactly on top of the SP, and the activation
energy needs to be obtained through interpolation. In order to determine the maximum
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energy accurately, the highest energy image can be treated separately, in the so-called
climbing image (CI) method [135]. In the CI method, the spring forces acting on the
highest energy image are deactivated during the iterative optimization, and the energy
gradient force is inverted to point along the path. The resultant force acting on the CI
becomes

FCI
GNEB � PT

[
−∇ECI

+ 2
(
∇ECI · τ̂CI

)
τ̂CI

]
. (3.15)

This procedure makes the image to move uphill in the energy landscape along the path.
After the CI-GNEB calculation has converged, the position of the CI coincides with the
SP along the MEP and gives an accurate value of the activation energy.



Part I

Skyrmionics in bulk chiral magnets
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4
Nucleation of magnetic skyrmions

from the conical phase

The inherent stability ofmagnetic skyrmions provided by their topological charge
makes the study of skyrmionics feasible, and understanding the nature of their stability
is key to the development of novel skyrmion-based devices. In this chapter, we explore
the nucleation mechanism and stability of magnetic skyrmions in chiral magnetic
materials. We perform minimum energy path (MEP) analysis [Sec. 3.2] and Atomistic
Spin Dynamics (ASD) simulations [Sec. 3.1.2], based on experimental observations of
the skyrmion formation, in order to understand the nucleation and spatial growth of the
skyrmion phase. The results reveal that the skyrmion lattice (SKL) is formed from the
conical (Con) phase progressively in small domains, with an activation barrier of several
eV for the case of MnSi. Furthermore, we study the different nucleation mechanisms
and the time evolution of the SkL formation in chiral magnetic thin films. We show
that the Con→ SkL phase transition is characterized by a rod-like (one-dimensional)
nucleation, in agreement with experimental observations reported in literature, and
reveal the interesting blinking (creation-annihilation) behavior of skyrmions close to the
phase boundary between the two phases.

Part of the results presented in this chapter are published in Physical Review B,
102, 104416. (2020).

4.1 Motivation

Magnetic skyrmions have garnered much attention as they show promise as bits
in next generationmemorydevices [136]. A key ingredient for their stabilization is broken
inversion symmetry, either in the underlying crystal lattice of bulk magnetic materials
or in the interfaces of thin film heterostructures. This broken symmetry, combined
with a strong spin-orbit coupling, produces the Dzyaloshinskii-Moriya interaction
(DMI) [Sec. 2.3.3]. In chiral helimagnets such as MnSi and FeGe, the DMI competes

https://journals.aps.org/prb/abstract/10.1103/PhysRevB.102.104416
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.102.104416
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with the exchange interaction to produce three distinct magnetic phases below the
Curie temperature, including the skyrmion lattice (SkL) [137–139]. The magnetic phase
diagram of MnSi is illustrated in Fig. 2.11 (b). As discussed in Sec. 2.5, the SkL phase is
bounded by first order transitions to the paramagnetic phase on the high temperature
side and to the conical phase in all other directions of the field-temperature phase
diagram.

Due to the skyrmions’ inherent topological structure, there is an energy barrier
for both the creation and destruction of the SkL from any non-topological phase (e.g. the
conical, helical, or field-polarized ferromagnetic phases). As a result, the conical and the
SkL phases are local minima of the free energy over a finite region of parameter space,
giving rise tophenomena suchas quenchmetastability andfieldhistorydependence [140–
145]. The metastability gives rise to activated behavior reported for Fe1−xCoxSi [146]
and Zn-doped Cu2OSeO3 [147], and the activation barrier for the destruction of a
metastable SkL in the latter compoundwas previously determined from time-dependent
measurements [148]. Similarly, the activation barrier for single skyrmions in magnetic
thin films have been predicted from theoretical calculations [149–152]. Understanding
the nature of this topological energy barrier is an important step to the development of
skyrmion-based applications.

Furthermore, time-dependent measurements of the SkL nucleation from the
conical phase have been reported for Co8Zn10Mn2 thin plates [153, 154], however, a
complete description of the nucleation mechanism of the SkL in chiral magnets has not
yet been fully established. Therefore, in the next sections, we employ a numerical analysis,
based on experimental observations of the skyrmion formation, to both understand and
quantify the activation energy for skyrmion nucleation and the microscopic dynamics
of the phase transition itself.

4.2 Topological energy barrier for skyrmion formation

In this section, we will investigate the phase transition between the conic phase,
which is a non-topological state, and the SkL phase, a topologically protected state.
For this study, we will compare our numerical calculations with recent experimental
observations of SkL nucleation in MnSi. As we will see below, experimental observa-
tions reveal an energy barrier for SkL phase nucleation, which our simulations will
demonstrate to be directly related to the creation of the topological charge.

4.2.1 Experimental observations in MnSi

The formation of the skyrmion phase can be observed experimentally, for
example, by means of small-angle neutron scattering (SANS) [155], where the hexagonal
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modulation of the SkL is observed as peaks in the diffraction pattern. In this section, we
focus in the SANS measurements of the SkL formation in MnSi reported in Ref. [39]. In
the experiments, a sample of MnSi crystal was aligned with the [110] crystallographic
direction parallel to both the applied field (which defines the orientation of skyrmion
tubes) and the incident neutron beam. Fig. 4.1(a) illustrates a typical diffraction pattern
observed in the experiments. This shows the sum of the scattered intensity as both the
sample and applied field are rotated together to satisfy the Bragg condition for each of
the six peaks [for extended discussion on the SANS technique we refer to Ref. [155]].
Essencialy, the diffraction pattern reveals a hexagonal modulation in the magnetic state,
with periodicity of approximately 16 nm (q ≈ 0.38 nm−1), thus indicating the presence
of the SkL phase. The total integrated Bragg peak intensity is proportional to the fraction
of the sample volume within the SkL phase. Bragg peaks associated with the conical
phase are not visible in this geometry, and therefore do not contribute to the scattering.

Figures 4.1(b) and 4.1(c) shows respectively a major and a minor hysteresis loop
as a function of applied magnetic field observed in the experiments at T � 28.1 K. In
both cases, the intensity was normalized by the maximal observed intensity, which
corresponds to the entire sample being in the SkL phase. In the major hysteresis loop,
the field was swept from 130 mT to 240 mT and back. Both end points are well inside the
conical phase, and this loop covers the entire SkL phase. Here, a clear separation of the
two sweep directions is observed, with the SkL volume fraction lagging in the direction
the field is changing. Therefore, the hysteresis indicates that there is an energy barrier
between the two magnetic phases, which is related to the creation and destruction of
magnetic skyrmions. Such energy barrier characterizes the topological protection of the
skyrmion phase.

To confirm hysteretic behavior, a series of minor loops were measured, each of
which was centered on the high field phase transition into the conical state. Prior to each
minor loop, the sample was cooled from the paramagnetic state to the measurement
temperature in a constant field (205 mT), followed by a reduction of the field to the
starting point. From here, minor hysteresis loops were recorded by raising the field to
partially leave the SkL phase and then decreasing it to reenter. An example of a minor
loop is show in Fig. 4.1(c). The minor loops show a clear nesting, quantified by the loop
area which grows superlinearly as the loops become longer as shown in Fig. 4.1(d). Here
the horizontal axis is the effective field sweep range ∆Heff, defined as the separation
between the two crossing points of the different field sweep directions illustrated in the
inset of Fig. 4.1(c). Values for ∆Heff and the loop area were determined by fits to the data
described below, and the area was found to grow as a power law ∝ (∆Heff)1.45±0.1.

To quantify the activation barrier for skyrmion formation and destruction, the
SANS hysteresis loops were analyzed using an adapted Preisach model. This is suitable
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Figure 4.1 – (a) SANS diffraction pattern of the SkL of MnSi at H � 195 mT. This is a sum
of measurements at different incident angles, with peaks on the horizontal axis
appearing fainter as they were, on average, further from the Bragg condition.
Background scattering near the detector center (q � 0) is masked off. (b) Major
hysteresis loop for T � 28.1 K. (c) Minor hysteresis loop at the same temperature,
centered around 205 mT and with an field sweep range of 33 mT. Symbols are the
same as in panel (b). Bottom left inset: Expanded view of the central part of the
loop. Top right inset: Schematic showing field sweep direction and effective sweep
range ∆Heff. Curves in (b) and (c) are fits to an adapted Preisach model described
in the text. (d) Area of hysteresis loops as a function of the effective sweep range.
Retrieved from Ref. [39].

for transitions in bistable systems, where two phases coexist as local free energy minima
over some range of the external field [156]. In the region of bistability, the free energy F
is assumed to be linearly proportional to the magnetic field B:

F(B,T, . . .) � F(Bc ,T, . . .) ∓ (X − X0/2)(B − Bc). (4.1)

Here, X is an order parameter with dimensions of a magnetic moment, used to
distinguish the conical (X � 0) and skyrmion (X � X0) phases. The sign of the second
term in Eq. (4.1) corresponds to respectively the lower (-) and upper (+) transition
between the SkL and conical phases. The Preisach free energy as a function of applied
field is shown in Fig. 4.2 (a). A similar picture was previously proposed to describe
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Figure 4.2 – Behavior of an individual Preisach unit. (a) Free energy for different values of the
applied field. Black curves correspond to fields where the conical and SkL phases
have the same energy. Red (blue) curves indicate the location of the phase transition
for increasing (decreasing) field. (b) Hysteretic response of the order parameter.
Retrieved from Ref. [39].

temperature-quenched metastable SkL phases in MnSi [143].

The low- and high-field transitions are treated independently, with each one
governed by a pair of parameters: the critical field (Bc1/c2) where the two phases have
the same free energy, and the height of the activation barrier (Ba1/a2) that inhibits
the transition. As the external magnetic field is increased from zero and approaches
the lower conical-to-SkL phase transition, the conical state free energy increases and
the SkL state free energy decreases. At B � Bc1 + Ba1, the conical phase minimum
vanishes and the system transitions to the skyrmion phase. For decreasing fields, the
transition occurs at B � Bc1 − Ba1. Similarly, the upper SkL-to-conical transition occurs
at B � Bc2 ± Ba2, where the situation is reversed and the conical and SkL free energies
respectively decrease and increase with increasing field. The Preisach model is an
inherently zero-temperature model, and a transition between the states only occur when
one minima disappears and the system is no longer bistable. This is appropriate for the
SkL as reported activation barriers are much greater than kBT [148] for T ≤ Tc .

Preisach free energy curves produce perfectly rectangular hysteresis loops,
centered around Bc and with width 2Ba , as shown in Fig. 4.2(b). Rounded loops are
obtained by considering the sample to be composed of microscopic, independently-
acting, “Preisach units”, each with its own Bc1/c2 and Ba1/a2. Since the magnetization is
approximately linear across both the upper and lower field phase transitions [138], Bc1/c2

and Ba1/a2 are expressed in terms of the corresponding applied fields Hc1/c2 and Ha1/a2.
To model the SANS hysteresis loops, Preisach units are assumed to follow a Gaussian



4.2. TOPOLOGICAL ENERGY BARRIER FOR SKYRMION FORMATION 87

T (K) Hc1 (mT) σc1 (mT) Ha1 (mT) Hc2 (mT) σc2 (mT) Ha2 (mT)
27.8 188 ± 8 19 ± 2 1.1 ± 0.3 211 ± 3 14 ± 1 1.0 ± 0.2
28.1 155.3 ± 0.2 12.5 ± 0.2 0.94 ± 0.14 204.4 ± 0.2 9.5 ± 0.2 0.96 ± 0.12
28.4 168 ± 9 21 ± 3 1.0 ± 0.3 200 ± 6 19 ± 2 0.7 ± 0.3

Table 1 – Preisach parameters obtained from fits tomajor hysteresis loops. Uncertainties indicate
the one sigma confidence interval provided by the fitting algorithm. Retrieved from
Ref. [39].

distribution in both critical and activation fields. These distributions are characterized
by their mean values (Hc1/c2,Ha1/a2) and standard deviations (σc1/c2, σa1/a2).

A fit to the major hysteresis loop for T � 28.1 K is shown in Fig. 4.1(b), and the
resulting parameter values are summarized in Table 1. Values of σa1/a2 converge to zero
during the fit, and this parameter was therefore eliminated. Differences between the
fit and the data near the maximum SkL volume fraction [see Fig. 4.1(b)] are due to the
Gaussian Preisach distribution used. A skewed distribution, introducing additional
degrees of freedom, could improve the overall fit. However, the values of Ha , which is
the principal variable of interest, would most likely remain unchanged as they depend
on the width of the hysteresis (separation of up- and down-sweeps) at half SkL volume
fraction, where the current fits are very good.

As the two transitions are treated independently some Preisach units could, in
principle, return to the conical phase before others have entered the SkL phase. At 28.1 K,
where the separation of the transition fields is much greater than σc1/c2, this rarely
occurs. However, at 27.8 K and 28.4 K the transitions overlap significantly, preventing
the intensity from reaching the maximum at 28.1 K, which is reflected in the increased
values of σc1/σc2 [see Table 1]. More importantly, the good agreement between Ha1 and
Ha2 supports a topological origin for the activation barrier which should be similar for
both phase transitions. Further support for this conclusion comes from the comparable
values of the activation fields at different temperatures. This indicates that the finite
temperature range of the SKL phase is not due to a significant reduction of the activation
barrier, but rather a convergence of the two critical fields as the energy separation
between the conical and SkL phases is reduced.

While applying the Preisach model does not require prior knowledge about the
nature of individual units, it is nonetheless relevant to consider their nature. In the
original application to ferromagnetic hysteresis, magnetic domains behave sufficiently
independent to be treated as Preisach units. By analogy, we anticipate that in the
present case they correspond to microscopic SkL domains, within which the cascade
of individual skyrmion formation occurs much faster than the measurement time.
In this way, each domain experiences the phase transition quasi-instantaneously and
independent of other domains [the time evolution of the SkL formation will be discussed
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∆Heff (mT) Hc2 (mT) σc2 (mT) Ha2 (mT)
5.5 ± 1.0 203.6 ± 0.2 11.5 ± 0.2 0.18 ± 0.05
15 ± 2 204.8 ± 0.1 10.5 ± 0.1 0.16 ± 0.05
23 ± 5 205.1 ± 0.2 10.5 ± 0.1 0.25 ± 0.04

Table 2 – Preisach parameters obtained from minor hysteresis loops at T � 28.1 K (PSI).
Retrieved from Ref. [39].

in more detail later in this chapter]. In such a scenario, variations of the local magnetic
field due to crystal inhomogeneities and demagnetization effects give rise to a range of
different transition fields and therefore a non-zero σc .

It is likely that both the distribution of SkL domains throughout the sample aswell
as their sizes depend on the field and temperature history, whichmay affect the activation
barriers observed in the SANS experiments. To explore this possibility, Preisach model
fits were performed on the minor hysteresis loops, where the initial configuration was
obtained by a field cooling to the midpoint of the SkL-conical transition. In contrast,
the major loop has a starting point entirely within the conical phase. The results of the
minor loop fits are summarized in Table 2. While the values of Hc2 agree with those
obtained from the major loop, Ha2 is reduced significantly, confirming that the barrier
to create or destroy SkL domains depends on the field history. We return to this point
later.

4.2.2 Theoretical modeling for the nucleation of the skyrmion-lattice

To complement the SANS data, we next perform atomistic spin dynamics
simulations to investigate the transition between the conical and SkL states using a
homemade simulation code [151] as well as the Spirit package [38]. The extended
Heisenberg Hamiltonian that describes the system of classical spins can be written as
[Sec. 3.1.2]

H � − Jex
∑
〈i , j〉

ni · n j −
∑
〈i , j〉

Di j · (ni × n j)

−
∑

i

µB · ni ,
(4.2)

where µi is the magnetic moment of the ith atomic site with |µi | � µ, and ni � µi/µ is
the ith spin orientation. Here Jex represents the first-neighbours exchange coupling, Di j

is the DMI vector, B is the perpendicular external magnetic field, and 〈i , j〉 denotes pairs
of nearest-neighbour spins i and j. For the simulations we adopt parameters Jex � 1 meV
and D � 0.18Jex, which are reasonable values for MnSi [157, 158]. Although intrinsic
exchange and cubic anisotropies [159] may define a preferential direction for the spin
rotation in MnSi at zero field, such high-order contributions are much weaker than the
energy terms in Eq. (4.2) and are therefore neglected in the calculations. Similarly, the
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Figure 4.3 – Unit cell of the B20-structure of MnSi showing only the location of the Manganese
atoms. The magnetic field B is applied along the [001] direction.

small contribution fromadipolar interaction is also not included [160, 161]. Thedynamics
of the spin system is governed by the Landau-Lifshitz-Gilbert equation [Sec. 2.2]

∂ni

∂t
� −

γ

(1 + α2)µi

[
ni × Beff

i + αni × (ni × Beff
i )

]
, (4.3)

where γ is the electron gyromagnetic ratio, α is the damping parameter and Beff
i �

−∂H/∂ni is the effective field.

The MnSi crystal, shown in Fig. 4.3, consists of a B20 structure (space-group P213)
with four Mn atoms and four Si atoms located at the 4(a)-type sites of the simple-cubic
unit cell with position coordinates (u , u , u), (0.5+u , 0.5−u ,−u), (−u , 0.5+u , 0.5−u), and
(0.5 − u ,−u , 0.5 + u), where uMn � 0.137 and uSi � 0.845 [162]. For the simulations, only
Mn magnetic moments are considered. The spin dynamics simulations were performed
in a mesh of N ×

√
3N ×N unit cells with N � 26, which fits a periodic cell of a triangular

lattice of skyrmions, consisting of two skyrmion tubes located at respectively the center
and corners of the simulation box. The choice of N was verified to minimizes the SkL
energy. Periodic boundary conditions are considered along the three dimensions. To
obtain the ground state of the spin model, the energy of the considered states are
minimized for different values of the applied field B ‖ [001]. The choice of field direction
parallel to one of the unit cell main axes ensures that skyrmions form as uniform tubes
within the simulation box. However, the direction of the applied field is not expected to
havemuch impact on the energetics as long as a high-symmetry direction of the crystal is
chosen. Figure 4.4(a) shows the energy obtained in the simulations for the field-polarized
ferromagnetic, conical and SkL states, fromwhere the ground state is found to be conical
for µB < 0.007Jex and 0.018Jex < µB < 0.028Jex, SkL for 0.007Jex < µB < 0.018Jex, and
field-polarized ferromagnetic for µB > 0.028Jex.

Next, the transition between conical and SkL states is considered. At the critical
fields µBc1 � 0.007Jex and µBc2 � 0.018Jex, both states have approximately the same
energy. The activation barrier between the two states can be calculated by the geodesic
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Figure 4.4 – (a) Energy per spin vs applied field for each state. The ground state is indicated by
the colored shading with blue for the conical (Con) state, red for the SkL and green
for the field-polarized ferromagnetic (FM) state. (b) Minimal energy path between
conical and SkL states for µB � 0.007Jex and µB � 0.018Jex. (c) Topological charge
as a function of the reaction coordinate for µB � 0.018Jex. (d) Spin configurations in
a N ×

√
3N × 2N mesh along the formation path for µB � 0.018Jex, as indicated in

panel (b). Retrieved from Ref. [39].

nudged elastic band (GNEB) method [see Sec. 3.2] and a climbing image method [134],
allowing a precise determination of the highest energy saddle point along the minimal
energy path connecting the two states. Here, the reaction coordinate defines the
normalized (geodesic) displacement along the formation path. Figure. 4.4(b) shows the
activation barrier calculated between the two states in both critical fields. From this one
finds that it is energetically favorable to break the conical state locally in different stages,
nucleating the skyrmions individually instead of the whole lattice at once. Figure 4.4(c)
shows the topological charge, given by [136]

Q �
1

4π

∫
n · (∂n

∂x
× ∂n
∂y
) dx dy , (4.4)

calculated along the formation path for each x y-layer of the sample for B � Bc2. Notice
that the tube of the first skyrmion is formed gradually, layer-by-layer, in a conical
background and the average topological charge approaches Q � 1, giving rise to the
first elongated maximum in the minimal energy path. This is consistent with previous
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works suggesting that skyrmions are nucleated or annihilated by the formation and
subsequent motion of Bloch points (magnetic monopoles) [163–165]. After that, the
second skyrmion is formed in a similar way, after which the average topological charge
approaches Q � 2 and the transition is complete. Energetically equivalent paths were
obtained for the first skyrmion nucleating either at the center or the corners.

As recognized previously, the transitions between the SkL and conical states
are not expected to occur in a spatially homogeneous fashion. As a result, the average
energy per spin necessary to nucleate a single skyrmion depends on the lateral size of
the domains. An estimate of the activation barrier can be obtained by comparing the
energy separation ∆Ea � |ESkL −ECon | of the SkL and conical states near the critical field,
due to an activation field Ba equivalent to the one obtained from the SANS experiments.
Adjusting for the difference between the transition fields obtained experimentally and
from the simulations one finds Ba ≈ (Bc2 − Bc1)/50 ≈ 2 × 10−4 Jex/µ, and from there
∆Ea ≈ 10−5 Jex. This value is roughly two orders of magnitude smaller than the activation
energy calculated in the GNEB simulation where the SkL was formed in two steps.
Therefore, to nucleate one skyrmion with a 100 times smaller activation field in the
simulations we need to consider a phase transition that occurs in 100 times as many
steps as previously. This is exactly equivalent to using a 100 times larger simulation
box, as the activation energy is given by the number of skyrmion nucleations per area.
Considering the SkL periodicity of 19 nm in MnSi [137], this corresponds to skyrmion
domains of order ∼ 0.05 µm2. This is the same order of magnitude as the correlation
length determined directly from the SANS experiments [39].

As the formation barrier for the individual skyrmions along the reaction coor-
dinate are all roughly the same height (see Fig. 4.4(b)), once the system has sufficient
energy to overcome the initial barrier skyrmions will continue to nucleate until defects
or demagnetization makes it energetically unfavorable. This limits the size of the SkL
domains, and we speculate that this mechanism is responsible for the discrete Preisach
units observed in the SANS measurements. In contrast, the change of SkL volume
fraction for the minor hysteresis loops is due to the expansion/reduction of already
present domains formed during the field cooling. This results in a smaller activation
barrier, which persists since the crystal never reaches a fully saturated conical or SkL
phase throughout the minor loop. Spatially resolved measurements would be required
to confirm this picture.

The topological energy barrier for each skyrmion can be estimated bymultiplying
∆Ea by the number of spins within a SkL unit cell, and increasing the length of the
skyrmions in the simulations to the thickness of the single crystal used in the SANS
experiments. Using the above relationship between Ba and Jex/µ with µ � 0.4µB [166],
this yields ∆Ea ≈ 7 eV per skyrmion. By the nature in which it was obtained, the



4.3. KINETICS OF SKYRMION NUCLEATION FROM THE CONICAL PHASE 92

activation energy above should be considered as an estimate rather than an exact value.

4.3 Kinetics of skyrmion nucleation from the conical phase

As discussed in the previous section, it is well known that magnetic skyrmions
can emerge from the conical phase as the system is excited by the appropriate applied
field and temperature. The ultrafast spin rotation along the phase transition is, however,
a challenge for experimental observations. Recent work has shown the time evolution of
skyrmion nucleation from the conical phase in thin plates of Co8Zn10Mn2 [153, 154],
nevertheless, the kinetics of such a phase transition is not fully understood. Therefore,
in this section we investigate the dynamical mechanism for the magnetic skyrmion
nucleation from the conical phase in chiral magnetic films.

To investigate the different stages of the phase transformation in more detail, we
perform spin dynamics simulations of the transition between the conical and SkL states.
For that purpose we make use of the extended Heisenberg Hamiltonian that describes
the system of classical spins, as written in Eq. (4.2). For the simulations we adopt a
spin-system parametrized by the exchange interaction Jex � 1 meV. The helix period
at zero field LD is defined by the ratio D/Jex � tan(2π/Ns), where Ns is the number
of spin sites along one period. For the simulations, we consider Ns � 16, which leads
to D � 0.41Jex. The dynamics of the spin system is governed by the Landau-Lifshitz-
Gilbert (LLG) equation [Eq. (4.3)]. In addition to LLG, fast energy minimizations are
performed using theVerlet-like velocity projectionmethod, as explained in Refs. [38, 132],
which accelerates convergence towards local minima and avoids overstepping due to
momentum considered in the standard LLG equation [167, 168]. In this method the
spins are treated as massive particles moving on the surfaces of spheres, where the
velocity at each time step is damped by projecting it along the force Fi � −∂H/∂ni and
ni is renormalized after each iteration in order to conserve the magnitude of the spins.
For the simulations we make use of the simulation package Spirit [38].

4.3.1 Mechanisms for skyrmion nucleation

Before investigating the nucleation mechanisms of the skyrmion phase, let
us first calculate the magnetic ground states of the considered spin-system. For the
simulations, we consider a sample of 160 × 138 × 16 spin sites, with periodic boundary
conditions along x and y directions. Contrary to Sec. 4.2.2, open boundary conditions
are set along the z direction, such that the thickness of the magnetic film corresponds
to d � LD . Fig. 4.5(a) shows the energy density profiles obtained in the simulations
for the considered magnetic phases: helix (HL), conical (Con), skyrmion lattice (SkL)
and out-of-plane ferromagnetic (FM). The magnetic ground state was found to be HL
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Figure 4.5 – (a) Energy per spin site obtained in the simulations for the four considered magnetic
phases: helix (HL), conical (Con), skyrmion lattice (SkL), and out-of-plane ferromag-
netic (FM), as a function of the out-of-plane applied field. (b) Snapshots of three
distinct nucleation mechanisms for the skyrmion formation [chiral bobber (CB),
toron, and the skyrmion mitosis (SM)]. (c) Minimal energy paths for different nucle-
ation mechanisms, for magnetic film thickness d � 2LD . Here, x � 0 corresponds to
a single skyrmion-tube and x � 1 corresponds to two fully formed skyrmions. The
three peaks along the formation path in the CB case correspond to the nucleation of
CB at the top surface, nucleation of CB at the bottom surface, and the connection
of bobbers into the new skyrmion-tube, respectively. The path along SM state was
found to be unstable. Results obtained for µB/Jex � 2.

for µB/Jex < 1, SkL for 1 < µB/Jex < 2.3, Con for 2.3 < µB/Jex < 2.6, and FM for
µB/Jex > 2.6.

Next, we focus on the transition between conical and SkL states. To model the
SkL growth from the conical phase, we fixed the applied field at µB/Jex � 2, where the
Con phase is metastable and the SkL is the ground state. The rate at which skyrmions
nucleate is related to the activation energy between the states before and after nucleation.
The activation energy can be calculated by the geodesic nudged elastic band (GNEB)
method [132, 151] together with the climbing image method [134], both implemented
in the Spirit package. Such methods allow the precise determination of the highest
energy saddle point along the minimal energy path connecting the two states, where
the reaction coordinate, x, defines the normalized (geodesic) displacement along the
formation path. In general, the transition between the two phases can be mediated by
different intermediate states. Here, we have considered the following: (i) the formation
of chiral bobbers (CB) [153, 169, 170], (ii) the formation of torons [169], and (iii) the
formation of Y-shaped skyrmion tubes during skyrmion mitosis (SM) [153]. Fig. 4.5 (b)
illustrates the considered intermediate states. For the magnetic film of thickness d � LD ,
as considered above, only the CB mechanism is stable along the minimal energy path.
However, as discussed in Ref. [169], the surface effects play important role in the
stabilization of skyrmion tubes in a conical background. Particularly, the formation
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of torons is favored by increasing the ratio d/LD . Therefore, we considered a thicker
magnetic film, with d � 2LD . In this case, toron nucleation path can be stabilized, but
the CB nucleation is still the energetically favorable mechanism for skyrmion formation,
as shown by the lower activation energy in the minimal energy paths in Fig. 4.5 (c).
The path along the skyrmion mitosis (the Y-shaped skyrmion) was unstable for the
two considered thicknesses, where in both cases the formation path collapsed into CB
formation. Therefore, for magnetic films of thickness d ≤ 2LD , as that considered in
Refs. [153, 154], we expect the preferential intermediate state for skyrmion nucleation
to correspond to CBs instead of torons or Y-shaped skyrmion tubes. For now on, we
therefore focus on the formation of CBs to study the mechanism for skyrmion nucleation
in chiral magnetic thin films.

4.3.2 Activation energy for chiral bobber nucleation

The activation energy for the skyrmion formation depends on both the applied
magnetic field and on the material parameters such as film thickness. Fig. 4.6 (a) shows
the minimal energy paths for the nucleation of a single skyrmion from the conical
phase for different film thickness d, at fixed field µB/Jex � 2.0. The first and second
peak along the formation paths correspond to the nucleation of the Bloch points of
CBs at the top and bottom surfaces. Each CB can be represented as a hemisphere [169]
of diameter LD and thickness LD/2, therefore, for d/LD > 1 a third peak along the
formation path corresponds to the connection of the chiral bobbers into the skyrmion
tube. Fig. 4.6 (b) shows the minimal energy paths for skyrmion nucleation for fixed film
thickness d/LD � 1.5, but at different values of applied field. Notice that by varying
either the film thickness or applied field one can cross the phase boundary between the

Figure 4.6 – (a,b) Minimal energy path for the nucleation of a single skyrmion from the conical
phase for (a) different film thickness d, at fixed field µB/Jex � 2.0, and (b) different
values of the applied field, for fixed film thickness d/LD � 1.5. Insets show the
stages of the phase transition, with chiral bobbers (CBs) nucleating at the top and
bottom surfaces before connecting to form the skyrmion (Sk) tube.
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conical (x � 0) and skyrmion (x � 1) phases, i.e., ECon − Esk changes sign.

4.3.3 Time evolution of skyrmion-lattice nucleation

When the conical spin-system is subjected to thermal excitation high enough
to overcome the activation energy for the skyrmion nucleation, the phase transition
takes place. The SkL phase grows with the nucleation of multiple skyrmions, and a
collective dynamics governs the evolution of the phase transition. In our numerical
study, to simulate the SkL phase growth, the spin system is therefore initialized in
the conical phase, and by performing spin dynamics simulations based on stochastic
Landau-Lifshitz-Gilbert (LLG) equation [38], the skyrmions are allowed to nucleate
and occupy the sample. For the simulations, we consider a magnetic film of thickness
d � LD , which activation energies for skyrmion nucleation are shown in Fig. 4.7 (a),
for different values of the applied field. Fig. 4.7 (b-c) shows the topological charge
Q �

1
4π

∫
n ·

(
∂n
∂x ×

∂n
∂y

)
dxdy calculated at the film surface as a function of the simulation

time, for (b) different values of applied field and fixed temperature, and (c) different
temperatures and fixed field. Observe that the SkL phase growth is characterized by
the fast nucleation of skyrmions at the beginning of the transformation followed by a
reduction of nucleation rate until saturation at the optimal skyrmion-density for the
considered parameters.

In fact, in Ref. [154] the authors show, by means of in situ Lorentz transmission
electron microscopy (LTEM) images of the magnetic states in a Co8Zn10Mn2 thin
plate, that the SkL growth from the conical phase satisfy the Johnson-Mehl-Avrami-
Kolmogorov (JMAK) model for phase transitions [171, 172]. The JMAK formula that
describes the time evolution of the SkL phase fraction Fsk can be written as

Fsk(t) � 1 − exp(−[k(t − t0)]n), (4.5)

where t0 is the time at which the phase transition starts, k is the overall reaction rate and
n is the so-called Avrami constant. The value of n represents the dimensionality of the
crystal growth, with n � 1, 2, and 3 corresponding to rod-like (1D), disc-like (2D), and
spherical (3D) crystal growth, respectively. By taking the logarithm on both sides of the
above equation, we obtain

ln[− ln(1 − Fsk(t))] � n ln(k) + n ln(t − t0), (4.6)

from where the Avrami number can be estimated by calculating the slope of ln[− ln(1 −
Fsk(t))] vs ln(t − t0).

In our simulations, the SkL phase fraction can be defined as Fsk(t) ≡ Q(t)/Qsat,
where Qsat is the saturation topological charge and gives the maximum number of
skyrmions in the sample. Fig. 4.7 (d) shows the plot of ln[− ln(1− Fsk)] vs ln(t − t0), with
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Figure 4.7 –Numerical simulation of SkL phase growth from conical phase. (a) Activation
energy for skyrmion nucleation at different values of applied field, for d � LD . (b-c)
Topological charge Q at the film surface as a function of time, for the simulation
of SkL nucleation from the conical phase, for (b) different values of applied field
and fixed temperature KBT/Jex � 0.9, and (c) different temperatures and fixed field
µB/Jex � 2.1. (d) Correspondent avrami number n obtained by linear fitting of
ln[− ln(1 − Fsk)] vs ln(t).

t0 � 0, obtained in the simulations, fromwhere we can extract the Avrami constant n ≈ 1
for most of the considered parameters, which is in agreement with the experimentally
observed in Ref. [154]. The SkL growth is therefore characterized by a rod-like (1D)
nucleation that can be attributed to the cylindrical growth of individual skyrmions from
the film surface, and the speed of the phase transition is limited by the formation of
individual skyrmion-tubes.

Observe that for KBT/Jex � 0.9 and µB/Jex � 2.4 the obtained Avrami number
(n � 0.71) is significantly lower than unity. The reduced value of Avrami number
indicates a sluggish nature of the nucleation process, which in this case we attribute to
the consecutive nucleation and collapse of the skyrmions. Such process is favored when
the system is close to the phase boundary between the SkL and Con states, as discussed
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in more detail in the following sections.

4.3.4 Nonuniform nucleation rates

When the value of activation energy for skyrmion nucleation is not uniform
throughout the sample, either due to nonuniformity of magnetic parameters, or due to
some extra phenomena that takes place during the SkL growth, e.g., the rearrangement
of already-nucleated skyrmions, a change in the overall SkL nucleation rate can occur.
In fact, in Ref. [154] the authors report a reduced value of Avrami number at later stages
of the Con→ SkL transformation. Here we show that the growth mechanism of the
SkL phase can be treated as rod-like (1D) in all stages of the transformation. In fact, in
the JMAK formula, the reaction rate is represented by the parameter k. Therefore, a
reduction in the skyrmion nucleation rate, or skyrmion formation driving force (out of
the expected saturation) implies that k is not constant. Therefore, let us now assume
that the dimentionality of the phase growth is 1D, i.e. n � 1 along the whole phase
transition, but the value of k changes during the prosess. The JMAK formula with n � 1
and for the phase growth starting at t0 � 0 is given by

Fsk � 1 − exp(−kt). (4.7)

If the value of k changes from k1 to k2 at a time t � t1 along the growth process, Eq. (4.7)
can be rewritten as

Fsk(t) �


1 − exp(−k1t) , if t < t1

1 − exp(−k1t1 − k2(t − t1)) , if t ≥ t1.
(4.8)

Fig. 4.8 (a) shows the plot of Fsk(t) obtained from Eq. (4.8) with k1 � 0.5, k2 � 0.1
and t1 � 2 s. Notice that the change in k induces a reduction in the overall slope of

Figure 4.8 – (a) Plot of Fsk vs t obtained from Eq. (4.8) with k1 � 0.5, k2 � 0.1 and t1 � 2 s. (b) Plot
of ln[− ln(1 − Fsk(t))] vs ln(t) correspondent to (a). Here, the dashed line represents
the linear fitting, which results in n < 1, even though 1D nucleation is assumed.
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ln[− ln(1−Fsk(t))] vs ln(t) [Fig. 4.8 (b)], similar to that observed in Ref. [154], even though
1D nucleation is assumed. Therefore, extracting the Avrami constant from the slope of
ln[− ln(1 − Fsk(t))] vs ln(t) can be misleading when the phase transition experiences a
change in the nucleation rate, either due to nonuniformities in the sample or due to
some extra phenomena that takes place during the transformation.

4.3.5 Skyrmion blinking

Notice that the SkL formation process can be characterized by a combination
of skyrmions (and/or chiral bobbers) nucleation and collapse as shown, e.g., by the
oscillations of the topological charge in Fig. 4.7 (b-c). This blinking behavior (creation-
destruction process) is favored by the local stability of an intermediate state between the
conical and skyrmion phase, which breaks the nucleation process into stages with lower
energy cost when compared to the homogeneous nucleation. Once at the intermediate
state, the energy barrier for the system to transit to the skyrmion phase can be similar
to the barrier to return to the conical phase, as indicated in Fig. 4.9 (a). This leads
to sequential instances of formation and collapse of CBs and skyrmions during the
formation of the lattice, seen in the simulations and illustrated in Fig. 4.9 (b). Such
blinking behavior is favored when the system is close to the phase boundary between
the SkL and Con states.

To investigate the nucleation process in more detail, we consider a smaller
simulation box which can accommodate a maximum of two skyrmions only. The spin
system is initialized in the conical phase and, by performing spin dynamics simulations
based on stochastic LLG, the skyrmions are allowed to nucleate and occupy the sample.
Fig. 4.9 (c) shows the topological charge calculated at the film surface as a function of
the simulation time for different values of applied field. Notice that, for µB/Jex � 2.4
all the nucleated CBs collapse [in the considered time window], and the system can
not develop to the full SkL phase. On the other hand, for µB/Jex � 1.8 the nucleated
CBs rarely collapse and the system quickly transitions to the SkL phase. The number
of CB nucleations therefore increases with respect to the number of collapses as soon
as we change the applied field from µB/Jex � 2.4 to 1.8, favouring the SkL formation,
as shown by the histograms in Fig. 4.9 (c). A high number of CB collapses therefore
results in a sluggish nature of the nucleation process, as observed for µB/Jex � 2.4 in
Fig. 4.7 (b).

The switching between skyrmionic and non-topological states has been proposed
as a bit operation for information storage [173]. Understanding the temperature-,
thickness- and field-dependence of the blinking behavior of magnetic skyrmions may
be crucial to the development of novel technological applications. We therefore expect
that the results presented in this section can motivate new research in the topic.
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Figure 4.9 – (a) Activation energy for skyrmion nucleation at different values of applied field,
for d/LD � 1.0. At higher field, the energy barrier for the CB to transit to the
skyrmion phase is similar to the barrier to return to the conical phase. (b) Snapshots
of blinking behavior of a chiral bobber, obtained in the spin-dynamics simulations
for µB/Jex � 2.0. (c) Topological charge Q calculated at the film surface as a function
of the simulation time, for different values of applied field. Histograms in the right
show the number of occurrences of the states Q � 0 (Con phase), Q � 1 (single
skyrmion) and Q � 2 (two skyrmions). Here d/LD � 1.0 and KBT/Jex � 1.0.

4.4 Conclusion of the chapter

We performed atomistic spin simulations to study the Conical (Con) to Skyrmion-
lattice (SkL) phase transition in chiral magnetic films. Comparing the simulations with
experimental data for MnSi, we reveled that the skyrmion lattice is formed progressively
in smaller domains, containing hundreds of skyrmions, with an activation barrier
of several eV/mm for a single skyrmion in MnSi. Further, we studied the different
nucleation mechanisms and the time evolution of the SkL formation in chiral magnetic
thin films. We showed that the Con→ SkL phase transition is characterized by a rod-like
(one-dimensional) nucleation that can be attributed to the formation and growth of chiral
bobbers from the film surface, and reveal the interesting blinking (creation-annihilation)
behavior of skyrmions close to the phase boundary between the two phases. Our results
advance the understanding of the nucleation mechanism of the SkL in chiral magnets,
and we expect that our findings will instigate further measurements of topological
energy barriers between different (chiral) magnetic states. Such studies are an important
step to understanding the evolution of magnetic states in bulk and ultrathin materials
and will establish definitively the feasibility of high-density devices based on topological
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spin structures.



Part II

Skyrmionics in thin film heterostructures
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5
Deflection of ferromagnetic and antiferromagnetic

skyrmions at heterochiral interfaces

Devising magnetic nanostructures with spatially heterogeneous Dzyaloshinskii-
Moriya interaction (DMI) is a promising pathway towards advanced confinement
and control of magnetic skyrmions in potential devices. In this chapter, we discuss
theoretically how a skyrmion interacts with a heterochiral interface usingmicromagnetic
simulations and analytic arguments. We show that a heterochiral interface deflects
the trajectory of ferromagnetic (FM) skyrmions and that the extent of such deflection
is tuned by the applied spin-polarized current and the difference in DMI across the
interface. Further, we show that this deflection is characteristic for the FM skyrmion,
and is completely absent in the antiferromagnetic (AFM) case. In turn, we reveal that the
AFM skyrmion achieves much higher velocities than its FM counterpart, yet experiences
far stronger confinement in nanoengineered heterochiral tracks, which reinforces AFM
skyrmions as a favorable choice for skyrmion-based devices.

The results presented in this chapter are published in Physical Review B, 99,
104409. (2019).

5.1 Motivation

The interfacially induced Dzyaloshinskii-Moriya interaction (DMI) [Sec. 2.3.3] is a
chiral interaction observed in ferromagnetic thin films, e.g., a Co layer, when coupled to
nonmagnetic layers with a strong spin-orbit coupling, e.g., the heavy metal Pt [174–176].
The interfacially-induced DMI favors the rotation of the magnetization at short length
scales, giving rise to chiral spin structures of theNéel-type, such as cycloids andmagnetic
skyrmions [177–180]. Particularly, magnetic skyrmions are promising candidates for
technological applications, such as spin-based information processing and computing
devices [180–183]. Most recently, the suggestion of skyrmions in antiferromagnetic

https://journals.aps.org/prb/abstract/10.1103/PhysRevB.99.104409
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.99.104409
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(AFM) systems has also increased the expectation on skyrmion-based devices, since in
those systems the skyrmions are not sensitive to stray fields, move straight along the
direction imposed by the applied current, and present better mobility with lower energy
costs [30, 94, 106–108, 184, 185].

The confinement of ferromagnetic (FM) skyrmions in mesoscopic chiral films
and tracks has already been thoroughly studied in recent years [186–189]. As a latest
development, spatial engineering of DMI has been suggested as an alternative manner
of skyrmion guidance and manipulation. Such heterochiral samples have been demon-
strated to strongly confine magnetic skyrmions [190], pin them or manipulate their
size [191], and increase their lifetime [192], in the regions where the DMI is higher. The
interest in these results is reinforced by the fact that heterochiral structures can indeed
be fabricated experimentally, via engineering of the substrate and/or the capping layer
of the thin ferromagnetic film [193, 194]. Bearing in mind the potential of heterochiral
systems for the development of skyrmion-based devices, the last piece of the puzzle is
to understand the skyrmion dynamics in such samples. However, the dynamics of a
single magnetic skyrmion while e.g. crossing the regions with different DMI strengths
remains mostly unexplored, while the confinement effects in AFM heterochiral films
have not been studied at all to date.

In the next sections we address theoretically the dynamics of FM and AFM
skyrmions in heterochiral films, and particularly their interaction with a heterochiral in-
terface (whereDMI changes, see e.g. a suggested realization in Fig. 5.1). TheDMI strength
can bemodified along the sample using, e.g., lithographic techniques to correspondingly
pattern the heavy metal (HM) layer(s) and thereby adjust the interfacially-induced
DMI [190, 193, 194]. Note that by altering the HM configuration and/or thickness one
might also induce changes in other material parameters, such as the magnetic anisotropy.
In this chapter, we are focusing exclusively on the effects of the spatially varied DMI,
and therefore consider the other material parameters homogeneous throughout the
sample to avoid ill interpretations of the results. We proceed by employing micromag-
netic simulations to show that local canting of the magnetization at the heterochiral
interface [190] can be seen as an imposed potential barrier in the Thiele formalism
for the center-of-mass of the skyrmion, that causes a characteristic deflection in the
trajectory of the FM skyrmion when crossing the heterochiral interface. After verifying
it in full micromagnetic simulations, we show that such deflection is completely absent
in an analogous antiferromagnetic sample, and that the AFM skyrmion: (i) moves
much faster than the FM skyrmion, as already predicted in the literature [30], but (ii)
experiences far stronger confinement in heterochiral films, so that the critical current
needed to push it over a heterochiral interface is much larger than in the FM case.
These results promote antiferromagnetic heterochiral films as an advanced platform for
skyrmion-based devices.
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Figure 5.1 – Schematic representation of an experimental analogue of the considered system, a
ferromagnetic layer between two heavy metal (HM) layers, with a suitably patterned
top layer. In the depicted sample, the heterochiral interface is created at the lateral
end of the top layer. The dashed line indicates the interface where the DMI changes.

5.2 Theoretical formalism

5.2.1 Micromagnetic model

The dynamics of the magnetization is governed by the Landau-Lifshitz-Gilbert
(LLG) equation [see Sec. 2.2 and Eq. 2.17]

dm
dt

�
γ

1 + α2 (m ×Heff + α [m × (m ×Heff)]) , (5.1)

where γ is the gyromagnetic ratio and α the damping factor.Heff is the effectivemagnetic
field given by the functional derivative of the free energy E �

∫
(Eex + Eanis + Edmi)dV

with respect to the magnetization: Heff � − 1
Ms
δE/δm.

For the micromagnetic simulations, we employ the simulation package Mumax3

[195], on an ultrathin ferromagnetic film with perpendicular magnetic anisotropy and
with spatially inhomogeneous DMI. The local free energy density E, related to the
magnetization M(x ,y) � Msm(x ,y), where Ms is the saturation magnetization and
|m| � 1, has multiple contributions, andwe consider the following: exchange, anisotropy,
DMI, and demagnetization. We approximate the demagnetization energy by using an
effective anisotropy Keff � K − 1

2µ0M2
s , with K the perpendicular magnetic anisotropy

and µ0 the vacuum permeability. This approximation is justified by the fact that we are
interested in ultrathin films, where dipolar coupling becomes local in the zero-thickness
limit [16]. In this chapter we do not consider the effects of an external magnetic field,
therefore, the Zeeman term of the energy-density is zero. The expressions for the
remaining energy-density terms are
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Eex � A
[
(∂xm)2 + (∂ym)2

]
,

Eanis � Keff(1 − m2
z),

Edmi � −D
[
mx∂xmz − mz∂x mx + my∂ymz − mz∂y my

]
.

For the simulations of the ferromagnetic case, we consider the following parameters:
saturation magnetization: Ms � 580 kAm−1, exchange stiffness: A � 15 pJm−1, and
perpendicular anisotropy K � 0.8 MJm−3 (Keff � 0.6 MJm−3), stemming from the
experimental results on Co/Pt systems [196, 197]. The used values of the DMI constant,
D, will be specified in the sections below. For all simulations, we consider a system
discretized into cells of size 1 × 1 × 0.4 nm3.

The Néel skyrmion in a chiral magnetic film can be driven by two different
scenarios [see Sec. 2.7.1]: (i) by an in-plane spin-polarized current (CIP) applied into
the ferromagnetic layer, or (ii) by an electrical current applied into the HM layer, which
due to the spin Hall effect gives rise to a spin-polarized current perpendicular to the
plane (CPP) [93–96]. In this chapter we explore both scenarios. For simulations of the
spin transfer torque (STT) associated with the CIP and CPP scenarios, the Zhang and
Li STT [Eq. (2.51)] and the Slonczewski STT [Eq. (2.52)] terms were added to the LLG
equation, respectively, as explained in Sec. 2.7.1. InMumax3 one can simulate the CPP
scenario by considering a fixed layer, with polarization vector mp , on top of the film
and the applied current injected along the ẑ direction. For both the CIP and the CPP
scenarios, the polarization rate of the spin-polarized current was fixed at P � 0.4.

For the antiferromagnetic samples, we consider the same parameters of the
FM case, except for the negative exchange stiffness A � −15 pJm−1. Note that Mu-
max3 was originally developed for simulations of FM systems in the continuous field
approximation. However, once we consider the AFM system, which comprises two
sublattices of reversely-aligned spins, we end up performing an atomistic simulation
(albeit with a large lattice parameter), where the finite-differences derivatives performed
byMumax3 are mathematically equivalent to the classical Heisenberg model (see, e.g.,
Appendix A.1). The STT can be applied also to the AFM system provided one considers
an ultra-small mesh size in the micromagnetic simulations [94, 106, 107, 198, 199]. In
this chapter, we simulate only the CPP-driven AFM skyrmion. Note that one can not
straightforwardly use the CIP scenario in the micromagnetic simulations since spatial
derivatives are involved in the STT term and the reversely-aligned magnetization of the
AFM system can no longer be described by a differentiable field.
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5.2.2 Thiele equation for skyrmion dynamics in the presence of exter-
nal forces

As discussed in Sec. 2.7.3, the Thiele equation describes the dynamics of the
center-of-mass of the skyrmion by assuming a rigid body motion of the spin texture ,
and can be written out for both CIP and CPP scenarios.

The Thiele equation for the CIP scenario reads

G × (ν − Ûr) +D(βν − αÛr) − ∇V(r) � 0, (5.3)

where G � G ẑ � 4πQẑ is the gyromagnetic coupling vector, with Q the skyrmion
number; Ûr � Ûxx̂ + Ûy ŷ is the drift velocity; ν is the velocity of the conduction electrons
associated to the spin-polarized current; V is the potential stemming from an external
force, such as boundaries or impurities; and D represents the dissipative tensor, with
components Di j �

∫
d2r∂im · ∂jm � Dδi j . For the range of parameters considered in

this chapter,D ≈ 4π–8π, as discussed in appendix A.2. When the spin-polarized current
is applied along the x direction, i.e. νy � 0, and V(r) � 0, the Thiele equation can be
separated into its two components given by Eqs. 2.55a and 2.55b. On the other hand, if
we consider V(r) � V(x), the Thiele equation leads to

Ûy �
G
Dα (νx − Ûx), (5.4a)(

G2

Dα +Dβ
)
νx −

(
G2

Dα +Dα
)
Ûx �

dV
dx
. (5.4b)

Note that the x component of the skyrmion velocity is directly affected by the external
potential and, consequently, the Magnus force (represented by the G term), which
drives the skyrmion along the y direction, is also affected. Indeed, taking the variation
δ Ûy ≡ Ûy(t + dt) − Ûy(t) of Eq. (5.4a), for a fixed current density, we obtain

δ Ûy � − GDαδ Ûx , (5.5)

which means that, if the external potential is attractive (dV/dx < 0), or repulsive
(dV/dx > 0), the skyrmion trajectory is deflected to the −G ŷ or +G ŷ direction respec-
tively, depending on the skyrmion number.

In the case of a repulsive external potential, the critical current for the skyrmion
to overcome such energy barrier is given by choosing Ûx � 0 for the maximal value of
F � dV/dx in Eq. (5.4b), i.e.

νc
x �

Fmax
G2

Dα +Dβ
. (5.6)

For the limit of small α and β (α ∼ β � 1), the critical current can be approximated as
νc

x �
FmaxDα
G2 . In the same way, Eq. (5.4b) results in (νx − Ûx) ≈ DαG2

dV
dx . Substituting this
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expression into Eq. (5.4a), we obtain the velocity of the skyrmion in the y direction:

Ûy ≈ 1
G

dV
dx
, (5.7)

which depends only on the external potential V . The maximal velocity can be written as
Ûymax � Fmax/G.

Similar results are obtained for a Néel skyrmion driven by the CPP scenario. In
this case, the skyrmion motion is described by the modified Thiele equation [93, 95, 96]:

−G × Ûr − αDÛr + 4πBjhm − ∇V(r) � 0, (5.8)

where jhm is the current density flowing through the heavy metal, which gives rise to
a spin-polarized current perpendicular to the plane. The parameter B quantifies the
efficiency of the spin-Hall effect. Now we consider jhm � jhm ŷ. For the case of V � 0,
Eq. (5.8) can be separated into its two components given by Eqs. 2.58 and 2.59. In this
scenario, for α � 1, the Magnus term dominates Ûx � Ûy, and the relevant motion is
perpendicular to the direction of the applied current. If we consider V(r) � V(x), the
modified Thiele equation leads to

Ûy �
1
Dα (4πB jhm − G Ûx), (5.9a)

−
(
G2

Dα +Dα
)
Ûx +

4πBG
Dα jhm �

dV
dx
. (5.9b)

Taking the variation δ Ûy of Eq. (5.9a), for a fixed current density, we recover Eq. (5.5).
Therefore, the presence of a external potential deflects the skyrmion trajectory in the
same direction as in the CIP scenario. In the same way, the critical current for the
skyrmion to overcome a repulsive potential is obtained by choosing Ûx � 0 in Eq. (5.9b),
i.e.

4πB jc
hm �

Dα
G Fmax. (5.10)

Finally, for the limit of α � 1, Eq. (5.9b) becomes (4πB jhm−G Ûx) ≈ DαG dV
dx . By substituting

this expression into Eq. (5.9a), we recover Eq. (5.7) for the skyrmion velocity in y direction.

5.3 Results and discussion

5.3.1 Ferromagnetic skyrmion

5.3.1.1 Skyrmion trajectory when facing nonuniform canting of the background mag-
netization

In this chapter, we are interested in the skyrmion motion in heterochiral systems,
particularly the behavior of the skyrmion trajectory while crossing an interface where
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DMI changes. As the simplest case of a heterochiral film, we consider a system where
the DMI strength, D, varies only in the x direction as: D � D1, for x < x0, and D � D2

for x > x0, with D1 and D2 constant. For this geometry, it was shown in Ref. [190]
that canting of the magnetization is induced at the interface x � x0, and that the
magnetization profile is given by:

θ(x) � 2 arctan
(
e−|(x−x0)/ξ | tan θ0

2

)
, (5.11)

where θ(x) is the angle of the spins with respect to the z axis, i.e.,m � (sin θ, 0, cos θ),
ξ �

√
A/Keff, and

θ0 � arcsin D2 − D1
πDc

(5.12)

is the canting angle at the interface, with Dc � 4
√

AKeff/π. Notice that in Ref. [190] the
DMIparameter takes opposite sign to the one used here. The canting of themagnetization
at the interface can be either positive or negative, depending on the difference between
the DMI strengths D1 and D2.

It now becomes of interest to first understand what happens to the skyrmion
trajectorywhen encountering suchnonuniformcanting of the backgroundmagnetization.

Figure 5.2 – Skyrmion trajectories (trail of black dots) in the presence of (a) negative and (b)
positive canting of the background magnetization at the right edge of the sample. (c)
Center-of-mass velocities of the skyrmion in plot (a). (d) Center-of-mass velocities
of the skyrmion in plot (b). Here j � 5 × 1010Am−2, α � 0.3 and β � 0. The center of
mass is calculated as the mean point of the region where mz � 0.
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In Fig. 5.2 we show the result of a simulation performed in themicromagnetic framework
for the skyrmion trajectory in a thin ferromagnetic film with uniform DMI, here fixed at
D � 0.8Dc , and artificially imposed canting of spins on the right sample boundary. We
consider a sample of size 128 × 96 × 0.4 nm3, with periodic boundary conditions in the
y direction. The skyrmion is initialized in the center of the simulated region and the
energy is minimized numerically. An in-plane polarized current is then applied in the−x̂
direction (CIP scenario). The skyrmion undergoes a transversemotion due to theMagnus
force. To address the effect of nonuniform canting of the magnetization (as expected
at a heterochiral interface), we fix a column of spins at the right side of the sample as
mfixed � (− sin θedge,0, cos θedge) in Fig. 5.2 (a), and mfixed � (sin θedge, 0, cos θedge) in
Fig. 5.2 (b), with canting angle θedge � π

4 . The fixed columns spread the canting of the
magnetization in the vicinity of the edge, which then affects the skyrmion trajectory.
Although these examples are not ideally realistic, they will be useful to understanding
the results of the next section. Fig. 5.2 (c,d) shows that the induced canting can be seen
as either repulsive (c) or attractive (d) external potential for the skyrmion. In those
two cases the Magnus force pushes the skyrmion in different directions (− ŷ and + ŷ).
These results are in accordance with Eq. (5.5) if one considers the local canting of the
magnetization as an external potential for the center of mass of the skyrmion, which is a
reasonable assumption, since the energy cost for the skyrmion to flip the background
spins during its motion is higher if the background spins are in the opposite direction
[Fig. 5.2 (a)] than if those have the same polarity as the skyrmion [Fig. 5.2 (b)]. We have
obtained analogous results for the CPP scenario.

Figure 5.3 – Skyrmion trajectories (given as a trail of black dots) for Q � −1 (a-c) and Q � 1 (d-f),
for different canting of the magnetization at the edge, mx

fixed � − sin θedge, + sin θedge
and 0, respectively from top to bottom, with θedge � π

4 . The applied current density
is j � 5 × 1010Am−2.
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In order to provide a better comparison of the simulations with the analytic
results, we next consider the case α � 1 and β � 0. In this case, the relevant motion in
the y direction will be given solely by the effect of the external potential [see Eq. (5.7)]. In
Fig. 5.3 we take α � 0.02 (within the typical range α ∼ 10−3–10−2 for skyrmion-hosting
materials [93, 200–203]), and perform the same simulation of Fig. 5.2, but now for six
different situations: for the skyrmion numbers Q � ±1, and the fixed magnetizations at
the right edge mx

fixed � − sin θedge, + sin θedge and 0, with θedge � π
4 . In the last case, the

fixed spins do not induce any canting of the magnetization, but increase the necessary
energy to flip their neighbours and must act as a repulsive potential for both considered
skyrmion numbers. With such examples, we look for the corroboration of Eq. (5.5) for
predicted deflection of the skyrmion trajectory. Comparing Fig. 5.3(a,b) to (d,e), we
change the skyrmion number [consequently the sign of G in Eq. (5.5) as well], but we
also change the canting effect from repulsive to attractive and vice versa. Therefore, the
skyrmion is deflected in the same direction for both Q � ±1. Comparing Fig. 5.3(c) to (f),
the skyrmion number changes, but the fixed spins act as a repulsive barrier in both
situations, hence, the skyrmion is deflected in opposite directions for opposite topological
charge. These results are in complete accordance with Eq. (5.5) and will be useful to
understanding the results of the next sections. For the CPP scenario, we obtained similar
results when choosing α � 0.02.

5.3.1.2 Skyrmion trajectory while crossing an interface where DMI changes

The examples of the previous subsection illustrate the strong interaction of
skyrmions with nonuniform canting, moreover, as we saw before, similar canting of the
magnetization is intrinsic to the DMI interface(s) in a heterochiral ferromagnetic film.
Therefore, we study next the trajectory of a single skyrmion while crossing an interface
where DMI changes. In the simulations, we consider a sample of size 256×256×0.4 nm3,
with DMI strength D1 for x < x0 and D2 for x > x0, where x0 � 128 nm. The skyrmion is
initialized at the position x � 64 nm, y � 128 nm (see Fig. 5.4) and we consider periodic
boundary conditions in the y direction. An in-plane current is applied along −x̂ (CIP
scenario), with α � 0.02 and β � 0, such that the relevant motion in the y direction will
be given solely by the effect of the heterochiral interface (the effects of the non-adiabatic
parameter, β, to the skyrmion trajectory are shown in Appendix A.3). As expected from
the previous discussion, the skyrmion is deflected at the interface along ± ŷ, depending
on the canting direction, which in turn depends on the DMI strengths D1 and D2.

To illustrate the role of different parameters, we calculate the skyrmion deflection
∆y after the skyrmion reaches the position x � 192 nm (as shown in Fig. 5.4), for selected
values of DMI strengths and applied currents. Fig. 5.5 shows the skyrmion deflection
after crossing the interface as a function of ∆D � D2 − D1, with D1 � 0.8Dc fixed. For
high currents, the deflections are smaller than those observed for low currents, and
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anti-symmetric for ∆D positive or negative, since the energy barrier induced by the
interface is small when compared to the kinetic energy induced by the applied current.
On the other hand, for low currents, the skyrmion motion can be completely blocked
by the repulsive potential induced by ∆D < 0, if j < jc(∆D), where jc is the critical
current for the skyrmion to overcome the interface. The more negative ∆D is, the higher
is the necessary current for the skyrmion to overcome the interface. For example, for
j � 2× 1010 Am−2 in Fig. 5.5, the skyrmion can not cross the interface for ∆D ≤ −0.05Dc ,
and continues the motion purely in the y direction, along the interface. Notice that for
the considered parameters the y component of the skyrmion velocity does not depend on
the applied current [see Eq. (5.7)]. The maximal velocity of the skyrmion in the y direction,
for a fixed ∆D, is the same for all current values, as confirmed by the graph in the
inset of Fig. 5.5. However, for low currents the skyrmion takes longer time to cross the
interface, which translates into a larger deflection. The largest deflections are observed
when the applied current is just above jc , e.g., for the case of j � 5× 1010 Am−2 in Fig. 5.5,
where the skyrmion overcomes the interface with ∆D � −0.1Dc after a rather extreme
deflection of ∆y � −18.5 µm.

Comparing the graph in the inset of Fig. 5.5, where Ûymax varies linearly with ∆D,
with Eq. (5.7) and Eq. (5.12), we obtain

Fmax ≈ cG∆D � cπDcG sin θ0, (5.13)

Figure 5.4 – The skyrmion is initialized on the left side of the diagram. Depending on the
difference of the DMI strengths, D1 and D2, the skyrmion deflection is positive (∆y >
0, black arrows) or negative (∆y < 0, blue arrows). The dots show the respective
trajectories of the skyrmion, for j � 2×1011Am−2 and∆D/Dc � 0.05,0.025,−0.025,−
0.05, respectively top-to-bottom.
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Figure 5.5 – Main panel exhibits the deflection in the skyrmion trajectory, ∆y, for different values
of applied current j and the change in DMI across the interface ∆D � D2 −D1, with
D1 � 0.8Dc fixed. The inset shows the maximal velocity of the skyrmion in the y
direction (along the interface) as a function of ∆D, for different values of j.

where c is the slope of Ûymax(∆D) characteristic in the inset of Fig. 5.5, and θ0 is the
canting angle at the interface (from the graph, we obtained c ≈ 67/Dc ms−1). Note that,
since the external potential V does not depend on the applied current scenario and
Eq. (5.7) is valid for both CIP and CPP scenarios, the graph in the inset of Fig. 5.5 and
consequently Eq. (5.13) are general results for a ferromagnetic skyrmion. Therefore, the
critical current, given by Eqs. (5.6) and (5.10), depends linearly on ∆D for both CIP and
CPP scenarios. Note that the dissipative factorD in Eqs. (5.6) and (5.10) depends on the
skyrmion size, which in turn depends on the material parameters, e.g., the DMI strength.
However, as will be shown in Fig. 5.9 of the next section, for the considered range of
parameters, such linear dependence is preserved in the CPP scenario for different values
of α.

5.3.1.3 Multi-channel skyrmion bit sequencer

Based on our findings, the heterochiral interface can be used to very precisely
guide the skyrmion motion in a more complex circuitry, for example to selectively
“write” skyrmions in one of multiple nanotracks, or to selectively direct a skyrmion to
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Figure 5.6 – Selective deflection of a skyrmion chain into multiple nanotracks, using the proper-
ties of a heterochiral interface. Dashed lines indicate the trajectory of each skyrmion
during the simulation, for a series of current pulses of j � 18 × 1010 Am−2 for
0 < t < 25 ns, j � 5.5 × 1010 Am−2 for 25 < t < 60 ns, and j � 10 × 1010 Am−2

for t > 60 ns, in a sample with α � 0.02, β � 0, D1 � 0.8Dc and D2 � 0.75Dc
(∆D/Dc � −0.05).

one of the many logical gates in a larger skyrmion microprocessor. We here exemplify
such an application of a heterochiral interface, for the targetted manipulation of a chain
of skyrmions by pulsed current. Although simplistic, this example is intended for the
reader to creatively visualize other possible uses of heterochiral systems.

In this example, we consider a rectangular ferromagnetic film of size 880 × 634 ×
0.4 nm3, where high-DMI tracks are engineered (by a suitable heavy-metal capping layer,
see Fig. 5.6) with DMI strengths of D1 � 0.8Dc (single track on the left) and D2 � 0.75Dc

(six tracks on the right side). A skyrmion chain, containing skyrmions labeled Sk1,
Sk2 and Sk3 and separated by 115 nm, is initialized in the D1 track on the left side
of the sample. A current pulse is then applied along the −x̂ direction (CIP scenario),
which induces motion of skyrmions along +x̂ direction. The duration and intensity of
subsequent current pulses is designed in such a manner that each skyrmion reaches
the heterochiral interface under a different current density, and thereby experiences
different deflection of its trajectory. Moreover, the intensity of the pulses is chosen
according to Fig. 5.5, so that the deflection of the skyrmions exactly corresponds to the
entry point of one of the six tracks on the right side of the sample [204].

Obviously, the exact duration and intensity of the current pulses has to be precisely
engineered for a particular realization of the sample, depending on the separation of
skyrmions in the initial chain and the values of all relevant parameters including the
change of DMI across the interface. Nevertheless, once optimized, such an interface can
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be very reliably used to write skyrmions in multiple channels in any desired sequence,
as we show in the animated data in Supplementary Material [204]. We remind the
reader that current-induced deflection of a FM skyrmion at a heterochiral interface
can easily exceed ten micrometers (as shown in the previous section), hence a large
number of nanotracks could be very controllably accessed in this manner. We stress that
such controlled manipulation is needed for more complex skyrmion-based computing
and storage circuits. For instance, it could be used to selectively place the skyrmions
in the input branches of (many) skyrmion-based logic gates [79], or to precisely write
information in multi-bit memory cells.

5.3.2 Antiferromagnetic skyrmion

Antiferromagnetic (AFM) skyrmions are expected to combine the advantages
of antiferromagnets with those of skyrmions regarding spintronic applications. AFM
skyrmions have zero net topological charge and simulations of their current-induced
motion have shown that accordingly they move straight along the direction imposed by
the applied current [30, 94, 106, 107]. This is considered advantageous for applications,
because as opposed to ferromagnetic skyrmions their antiferromagnetic counterparts
are not driven towards the boundary of the hosting magnetic structures, where they
can collapse. Additional benefits arise from their antiferromagnetic nature, i.e. their
insensitivity to parasitic stray fields [30]. In what follows, we address in more detail the
behavior of AFM skyrmions in heterochiral samples.

Antiferromagnetic skyrmions have been recently intensively studied regarding
their spin structure, their stability, and their motion [30, 94, 106, 107, 185, 205–207]. The
AFM skyrmion comprises a two-sublattice structure, where each sublattice (indexed 1
and 2) contains half of the spins of the system and has the opposite magnetization of
the other sublattice. In this way, the topological numbers projected to each sublattice
satisfy Q1 � −Q2. The opposing topological index of two sublattices causes the exact
cancellation of the Magnus force in the presence of current, so the antiferromagnetic
skyrmion moves along the direction of the current. The velocity of the AFM skyrmion
driven by a current density is inversely proportional to the damping factor α, and the
AFM skyrmion can move much faster than the FM one for weak damping, possibly
reaching km/s while remaining stable [30, 94, 106–108].

To understand the dynamics of the AFM skyrmion while crossing an interface
where the DMI changes, we first simulate, in the micromagnetic framework, the AFM
ground state in the presence of such an interface. Here, we consider a sample of size
256×100×0.4 nm3 with DMI strength D1 for x < x0 and D2 for x > x0, with x0 � 128nm.
Fig. 5.7(b) shows a snapshot zoom of the configuration obtained after minimizing the
energy numerically. Notice that the induced canting (mx � sin θ) points in opposite
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Figure 5.7 – (a) Canting of the magnetization θ(x) at a DMI interface of a heterochiral AFM
system, plotted separately for each sublattice, for D2 − D1 � 1.1Dc . Dashed lines
represent the analytic result for the FM system, given by Eq. (5.11). (b) Snapshot
zoom of the configuration obtained after minimizing the energy numerically.

directions in each sublattice. As shown in Fig. 5.7(a), the canting induced at each
sublattice follows the analytic result for the FM system (dashed lines), given by Eq. (5.11).
In the presence of canting induced by the DMI interface, we expect skyrmion scattering
at each sublattice to follow the FM result of Fig. 5.3. We recall that the sublattices have
opposite topological charge and induce opposite canting at the interface, hence the
effective motion of the AFM skyrmion, given by a combination of the two sublattices,
is a combination of either Fig. 5.3 (a) and (e), or Fig. 5.3 (b) and (d). Therefore, the
characteristic deflection observed for the FM skyrmion while crossing the interface
is completely absent (cancelled out) in the AFM system. However, the attractive or
repulsive effect in the x direction is still expected.

Thedynamics of themagnetization in themicromagnetic simulations is controlled
by applying a spin current perpendicular to the plane (CPP scenario). Since the DMI
interface is always either attractive in both sublattices [combination of Fig. 5.3 (b) and
(d)] or repulsive in both sublattices [combination of Fig. 5.3 (a) and (e)], the DMI interface
can be seen as an external potential in the modified Thiele equation [Eq. (5.8)], for a
single lattice with G � 0. Since the AFM skyrmion moves along the direction of the
current, now we assume jhm � jhmx̂, and the Thiele equation for the AFM skyrmion
reads

−αD Ûx + 4πB jhm −
dV
dx

� 0, (5.14)

with Ûy � 0. In the same way as in the FM case, the critical current for the AFM skyrmion
to overcome a repulsive potential is obtained by choosing Ûx � 0 in Eq. (5.14), for the
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Figure 5.8 – Snapshots of the calculated spin configurations during simulation for the AFM (a)
and FM (b) skyrmion driven by the CPP scenario. The trail of black dots indicates the
skyrmion trajectory, plotted at intervals of 0.05 ns. (a) The AFM skyrmion reaches
the interface after t � 0.15 ns, where its movement is completely blocked. (b) The
FM skyrmion moves slower than the AFM one, but can cross the interface after
sufficiently long time. (c) Center-of-mass velocities of the FM skyrmion, during
motion shown in (b). (d) Center-of-mass velocities of the AFM skyrmion, during
motion shown in (a). The spin current is applied along the ẑ direction but polarized
along + ŷ ( ĵhm � −x̂), for the AFM case, and −x̂ ( ĵhm � − ŷ) for the FM case, with
current density j � 2 × 1010 Am−2, DMI strengths D1 � 0.8Dc and D2 � 0.775Dc ,
and damping parameter α � 0.02. The center of mass is calculated as the mean
point of the region where mz � 0.

maximal value of F � dV/dx, i.e.

4πB jc
hm � Fmax, (5.15)

which means that the critical current does not depend on α [similar result is obtained
for the CIP scenario if one considers G � 0 in Eq. (5.3)]. Therefore, for α � 1, not
only that AFM skyrmion travels faster than the corresponding FM one, but the critical
current for the AFM skyrmion to overcome the same energy barrier is much higher
than that expected for the FM skyrmion [see Eq. (5.10)]: jc

AFM � (G/Dα) jc
FM. Fig. 5.8

shows the comparison between the AFM and FM skyrmion driven by the CPP scenario
in the presence of a DMI interface. The skyrmion is initialized on the left side of the
interface, and for the same current density ( j � 2 × 1010 Am−2), the AFM skyrmion
moves much faster than the FM one, as shown in Fig. 5.8 (c,d), but only the FM skyrmion
can cross the interface. This means that the enhanced skyrmion confinement reported
in ferromagnetic high-DMI racetracks due to spatially engineered DMI [190] is even
more effective for the antiferromagnetic racetracks.
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Figure 5.9 – Critical current for the skyrmion to overcome a heterochiral interface in the AFM
and FM cases, as a function of ∆D, with D1 � 0.8Dc fixed. Inset shows that all data
collapses on the same curve with appropriate scaling, following Eq. (5.15).

Fig. 5.9 shows the numerically calculated critical current for the skyrmion to
overcome the heterochiral interface in the AFM and FM cases, as a function of the
difference in DMI across the interface. For the FM case, for lowered damping parameter,
the skyrmion moves faster, but the efficiency of the confinement also decreases, which
may be a drawback for racetrack applications. However, in the AFM case, the critical
current is very large for the considered values of α, as expected from Eq. (5.15). In other
words, our results indicate that the AFM skyrmion indeed moves faster, yet experiences
stronger confinement than the FM skyrmion in heterochiral films, especially for systems
with weak damping. Both these (seemingly contradictory) features establish AFM
skyrmions as a favorable choice for skyrmion-based devices. The values of α considered
here are similar to those obtained from experimental results on CoFeB/W systems
[93, 202, 208] and Co/Pt layers [196] (α ≈ 0.015 and α ≈ 0.3, respectively). The inset
in Fig. 5.9 demonstrates the scaling of the critical current of the FM cases to the AFM
results, with factor (Dα/G), as expected from the analytic formulae. Here G � 4π and
the dissipative term is calculated from the simulations as specified in Appendix B. For
the inset in Fig. 5.9 we useD � 4.87π, calculated for the skyrmion at rest, in the region
with D1 � 0.8Dc . Note that similar results can be obtained from the Thiele equation
by considering the external potential due to a “boundary” instead of the heterochiral
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interface (as done in Sec. 5.3.1.1).

5.4 Conclusion of the chapter

Recent advances in atomically controlled growth of heterostructures have opened
the door to heterochiral structures with spatially engineered DMI, with precisely defined
interfaces where DMI changes. In this chapter, we have addressed the expected behavior
of skyrmions in such systems, by studying the dynamics of both ferromagnetic and
antiferromagnetic skyrmions when encountering a heterochiral interface during their
motion. We demonstrated that a local canting of the magnetization, characteristic for the
interface where the DMI changes, can strongly deflect the trajectory of a FM skyrmion.
We explored the thresholds of this phenomenon both analytically and numerically, and
quantified its dependence on the relevant material parameters. These findings are very
useful for the controlled manipulation of either single skyrmions or skyrmion chains in
skyrmion-based devices (switches, logic gates, memory elements, to name a few) where
depending on the applied current one can control which path the skyrmion will take in
the corresponding nanoengineered circuit, as exemplified in Sec. 5.3.1.3.

In addition, we showed that such a deflection characteristic for the ferromagnetic
skyrmion is completely absent in the antiferromagnetic case. Although this finding is
detrimental for the applications of the above effect in AFM systems, we demonstrated
that the AFM skyrmion holds other advantages to the FM one - it travels much faster for
the given applied current, yet is far better confined in heterochiral films even at high
driving currents. This makes AFM skyrmions favorable for skyrmion-based devices in
which very fast transfer of information and reliable guidance within specified tracks are
essential.
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6
Skyrmion-vortex coupling in chiral

magnet-superconductor heterostructures

In this chapter, we discuss the coupling of magnetic skyrmions and super-
conducting vortices in magnet-superconductor heterostructures. First, the effects of
skyrmion stray field on a superconducting film is explored by numerical simulations
in order to explain experimental observations of the skyrmion-vortex interaction in
hybrid material. Next, we use numerical simulations and analytic arguments within
London and Thiele formalisms to reveal broader possibilities for manipulating the
skyrmion-vortex dynamic correlations in the hybrid system, that are not possible in
its separated constituents. We explore the thresholds of particular dynamic phases,
and quantify the phase diagram as a function of the relevant material parameters,
applied current and induced magnetic torques. Finally, we demonstrate the broad and
precise tunability of the skyrmion Hall-angle in presence of vortices, with respect to
currents applied to either or both the superconductor and the ferromagnet within the
heterostructure. The realization of a strongly interacting skyrmion-vortex system opens
a path toward controllable topological hybrid materials, unattainable to date.

The results presented in this chapter are published in Physical Review Letters,
126, 117205. (2021) and Physical Review B, 100, 014431. (2019).

6.1 Motivation

The ability to trap and manipulate magnetic skyrmions is of great recent im-
portance for cutting-edge memory devices and information technology [180–183].
Heterostructures often present nontrivial phenomena enabled by the competition or
hybridization of the physical properties of its parts. Particularly, magnet-superconductor
heterostructures have received much attention in recent years [209–212], either for their
possible applications in spintronics [213] and Josephson devices [214–217], or for the
rich emergent physics in such systems [218–222]. Recently, theoretical works on chiral

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.126.117205
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.126.117205
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.100.014431
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magnet (CM)-superconductor (SC) heterostructures have demonstrated that the stray
magnetic field of superconducting vortices may be able to create [223] skyrmions in the
magnetic layer, also to trap or repel the preexisting skyrmions [224, 225], depending
on vortex polarity. First insights in the dynamic properties of such hybrid systems
were also recently provided in Ref. [224]. Furthermore, the combination of the Zeeman
field with spin-orbit coupling (SOC) in such systems is suggested for the creation of
a topological superconductor hosting Majorana fermions at its boundaries and vortex
cores [226–233]. Majorana fermions have great utility in quantum computation. In this
way, controlling the nucleation and dynamics of vortices in the presence of skyrmions is
an important step to unlocking the potential of SC-CM hybrids for topological [234, 235]
and fluxonic [236] quantum computation.

In the following sections we discuss experimental observations of the skyrmion-
vortex interaction in SC-CM heterostructures, followed by numerical study of the
effects of skyrmion stray field on a superconducting film, where we demonstrate the
nucleation of the skyrmion-vortex pair in engineered hybrid material. Next, we provide
an detailed analysis and investigate the manipulation of an isolated skyrmion-vortex
pair in a SC-CM hybrid, in case of independently biased films (current applied to
either CM or SC part). We study the dependence of the net motion of skyrmions and
vortices on the viscosities of the host materials, the exerted Lorentz force and magnetic
torques by applied current(s), and calculate the skyrmion Hall-angle with respect to
currents applied into both superconductor and magnetic films. The results reveal that
the skyrmion Hall-angle with respect to current applied into the magnetic film is
always greater than that observed in the absence of vortices. We stress the possibility of
compensating the skyrmion Hall effect (SHE) in such systems by applying combined
currents into both constituent materials of the heterostructure, which is of importance
for the facilitated skyrmion guidance in racetrack applications, where the SHE can cause
skyrmion to annihilate at the sample edges.

6.2 Stray field and flux of magnetic skyrmions

As we shall see along this chapter, the magnetic stray fields of skyrmions and
vortices play crucial role in their interaction. Therefore, in what follows, we introduce
the main characteristics of the stray fields for each system.

Let us first consider a single magnetic skyrmion in a chiral magnetic film of
thickness dm . The local magnetic free-energy density is related to the magnetization
M(x , y) � Msm(x , y), with Ms the saturation magnetization and |m| � 1. The magne-
tization profile θ � cos−1(mz) along the skyrmion have approximated solution [237]



6.2. STRAY FIELD AND FLUX OF MAGNETIC SKYRMIONS 121

θ(r) ≈ π −
∑
+,−

sin−1
[
tanh

( r ± r0
σ

)]
, (6.1)

where r is the distance from the skyrmion center and r0 and σ represent the domain
wall position and width, respectively. The values of r0 and σ can be obtained by fitting
Eq. 6.1 into the magnetization profile obtained from micromagnetic simulations.

The skyrmion stray field at a distance h above the magnetic film surface can be
described by means of multipole expansion, and can be written as [238]

Bz(w ,r) ≈ b0

[
P
R3 −

(2Q + 3Pw)w
R5 − 5Q

2
(r2 − 2w2)w

R7

]
,

Br(w ,r) ≈ b0

[
(Q − 3Pw)r

R5 − 5Q
2
(r2 − 2w2)r

R7

]
,

(6.2)

where Bz and Br are the out-of-plane and in-plane components of the stray field
respectivelly, and b0 � −µ0Ms dm/2, w � h + dm/2 and R �

√
r2 + w2. P and Q are given

by

P �

∫ ∞

0
r(cos θ − 1)dr,

Q � cos γ
∫ ∞

0
r2 sin θdr,

(6.3)

where γ is the skyrmion helicity (in our case, γ � 0 for the Néel skyrmion). Note that
for a given skyrmion profile, θ(r), P and Q are constants.

The magnetic flux φsk generated by the skyrmion can be calculated by inte-
grating the magnetic field [Eq.(6.2)] over the area above the skyrmion, i.e., φsk(w) �
2π

∫ rc

0 Bz(w ,r)rdr, where rc is the radius of the considered area, from where we obtain

φsk(w) �2π
[
Ω0

(
1
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− 1
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)
+Ω1(w)

(
1
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c
− 1
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)
+Ω2(w)

(
1
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c
− 1
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)]
,

(6.4)

where Rc �
√

r2
c + w2 and

Ω0 � −b0P,

Ω1(w) � b0

(
Pw2

+
3
2Qw

)
,

Ω2(w) � −
3
2b0Qw3.

(6.5)

Note that the magnetic flux generated by the skyrmion above the magnetic
material depends strongly on the skyrmion size, and it rapidly decreases with the
distance from the magnetic film surface.
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Figure 6.1 – Left: Schematic of a single vortex in the superconducting film. The magnetic field B
crossing the vortex is shown as black lines. Right: Isolated vortex structure, showing
the spatial variations of the induced magnetic field density b(r) and Cooper-pair
density |Ψ|2 near the vortex core. Adapted from Ref. [40].

6.3 Stray field of superconducting vortices

When a type II superconductor is subjected to an applied external magnetic field,
vortices of supercurrent (also called Abrikosov vortices) [239] emerge in the sample
to drive magnetic flux lines across the superconductor [Fig. 6.1]. Each vortex carries a
quantum of magnetic flux and, similar to magnetic skyrmions, can move throughout the
sample without losing its shape. The stray field of the superconducting vortex can be
calculated analytically in the London limit, λ � ξ, where λ and ξ are the superconductor
penetration depth and the coherence length, respectively [239]. The general solution for
the stray field produced outside the superconducting film of thickness ds by a straight
vortex reads [240]

Br(r,z > 0) �
φ0

2πλ2

∫ ∞

0
dk

k J1(kr)
k2 + λ−2 f (k ,z), (6.6a)

Bz(r,z > 0) �
φ0

2πλ2

∫ ∞

0
dk

k J0(kr)
k2 + λ−2 f (k ,z), (6.6b)

where
f (k ,z) � τe−kz (k + τ)eτds + (k − τ)e−τds − 2k

(k + τ)2eτds − (k − τ)2e−τds
,

and τ �
√

k2 + λ−2. Here, z � 0 represents the superconductor surface and r �
√

x2 + y2

the distance from the center of the vortex core. As discussed in Ref. [240], for the case of
ds � λ, the stray field of a single vortex can be approximated, near the superconductor
surface, by the field of a magnetic monopole of “charge” 2φ0, where φ0 is the magnetic
flux quantum, located at a distance dp � 1.27λ below the superconductor surface. In
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this case, the stray field takes the simple form

Br(r,z > 0) �
φ0

2π
r

R3 , (6.7a)

Bz(r,z > 0) �
φ0

2π
z + dp

R3 , (6.7b)

where R �

√
r2 + (z + dp)2 is the distance from the monopole. In Sec. 6.8 we use this

approximation in our calculations for the case of thick superconducting films, ds � λ,
while for small or moderate thicknesses we use the full expression given by Eq. 6.6. For
more details, refer to Appendix A.4.

6.4 Experimental observations in [IrFeCoPt]/Nb heterostruc-
tures

The skyrmion-vortex interaction in the SC-CM hybrid material can be observed
via magnetization and transport measurements in magnetic and superconducting films.
In this section, we focus on the experimental observations reported in Ref. [11] for the
[IrFeCoPt]/Nb heterostructures, which are the first SC-CM hybrids reported to host
stable skyrmions in low fields and temperatures below the superconducting transition.
The interaction between skyrmions and vortices can be mediated by two mechanisms:
(i) exchange coupling, where the skyrmion exchange field combined with interfacial
SOC induces circulating spin-polarized supercurrents jex that interfere with vortex
currents [2,3,21–23]; and (ii) the interaction between their stray fields. In the first case,
the direct contact between superconductor and magnet is required. In the second case,
the magnitude of the interaction depends on the material thickness, skyrmion size,
and the separation distance between SC and CM layers [24]. These interactions can be
further modulated by adjusting the skyrmion/vortex length scales [see Fig. 6.2 (a)]. For
example, the stray field coupling is enhanced by increasing skyrmion size, whereas
proximity coupling requires jex and vortex currents js to circulate with similar radii,
which corresponds to the condition ξ < rsk < λ, where ξ, λ are the superconducting
coherence and penetration lengths [239], and rsk is the skyrmion radius. Since the
skyrmion core polarization is antiparallel to the applied magnetic field H, it repels the
superconducting vortices which carry magnetic flux-lines parallel with H. However,
as we shall see in the following sections, a sufficiently large skyrmion can nucleate an
antivortex in the superconductor, thus creating a bound pair of topological states.

Fig. 6.2 (b) shows the SC-CM hybrid samples considered in the experiments.
To investigate the different interaction mechanisms, two types of heterostructures
are considered: a chiral magnet-superconductor (MS) sample comprised of a Nb layer
depositeddirectly onto a [Ir1Fe0.5Co0.5Pt1]10 magnetic film (subscripts, e.g. in Ir1 andFe0.5,
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Figure 6.2 – (a) Schematic of a Néel skyrmion in the chiral magnet (bottom layer) in the presence
of a (anti)vortex in the superconductor (top layer) with flux −Φ0 antiparallel to
the external magnetic field H. Vortex currents js flow at radii up to λ; exchange
currents jex are maximal at rsk , where the local out-of-plane magnetic moment
mz � 0. The superconducting order parameter |Ψ| is suppressed over a length ξ
in the vortex core. (b) Sample compositions: numbers (e.g., Ir1, Pt2) indicate layer
thicknesses in nm and there are 10 stacked repeats of the [Ir1Fe0.5Co0.5Pt1] unit.
(c) Magnetization M(H) and topological Hall resistivity ρTH(H) at temperature
T � 5 K for a [Ir1Fe0.5Co0.5Pt1]10 film. Arrows indicate field sweep directions;
green/red dashed lines indicate skyrmion nucleation/annihilation fields Hnuc/Hann,
respectively, and the saturationmagnetization Ms � 1.45MAm−1. (d–i)MFM images
at T � 5.5 K in a bare [Ir1Fe0.5Co0.5Pt1]10 film during a H � 0.25 T→−0.4 T sweep.
Scale bars are 500 nm; color bars indicate the MFM probe resonance shift ∆ f in Hz,
proportional to mz . (j) Evolution of the superconducting magnetization Msuper(H)
through Hnuc. Data from a reference 25 nm Nb film are labeled S. Green arrows and
dashed lines highlight the change in Msuper(H) below Hnuc. Adapted from Ref. [11].

indicate layer thicknesses in nm and there are 10 stacked repeats of the [Ir1Fe0.5Co0.5Pt1]
unit); and a chiral magnet-insulator-superconductor (MIS) sample, which include a
5 nm insulating MgO layer between SC and CM layers to suppress exchange coupling.

The magnetic properties of the isolated [Ir1Fe0.5Co0.5Pt1]10 film are summarized
in Fig. 6.2 (c). The sample is subjected to applied magnetic field, and by reducing the
field from ferromagnetic saturation, a drop in magnetization M(H) coincides with
an increase in topological Hall resistivity ρTH(H), signifying skyrmion nucleation at
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Hnuc ≈ 0.14T [11, 241].Magnetic forcemicroscopy (MFM) images taken fromdescending
field scans [Figs. 6.2 (d-i)] reveal isolated skyrmions in fields near the peaks in ρTH(H)
[Fig. 6.2 (e)]. At lower fields, skyrmions proliferate and agglutinate into worm-like
structures [Fig. 6.2 (f)], merging into labyrinthine stripes near zero field [Fig. 6.2 (g)]. After
field inversion, the stripes eventually split into individual skyrmions [Fig. 6.2 (h)] with a
concomitant peak in ρTH(H), before annihilation at Hann according to previous studies
[60–62]. Detailed analysis of the MFM image indicates a typical rsk � 51± 6 nm [11]. The
thickness ds � 25 nm of the superconducting Nb layer is therefore chosen to optimize
skyrmion-vortex coupling by adjusting the superconductor length scales according to
the observed skyrmion radius [11].

Fig. 6.2 (j) shows the field dependence of the superconducting magnetization,
defined as Msuper(H) � M(H, T < Tc) − M(H, T � 10 K), where Tc � 6.05 K is the
critical temperature of the superconductor. Below Hnuc, the chiral film minimizes its
free energy by nucleating (negatively magnetized) skyrmionic domains. This coincides
with a sharp change in Msuper(H) becoming increasingly negative in both MS and MIS
samples. In contrast, Msuper(H) of a bare 25 nm Nb film (S) evolves smoothly through
this field range. The change in Msuper below Hnuc indicates two possible processes in
the heterostructures: (i) the ejection of vortices (with positive magnetic moment) at
the sample edges and (ii) antivortex formation with negative moment (parallel to the
skyrmion cores).

A threshold for antivortex formation by zero-field skyrmions was derived in
Ref. [225], and is given by Ms ≥ φ0 ln(λ2/dsξ)/(0.86π2dm rsk), where Ms and dm are the
saturation magnetization and thickness of the magnetic layer, respectively; and φ0 is
the magnetic flux quantum. The skyrmions in the [IrFeCoPt]10/Nb heterostructures
exceed this threshold by 34% at 2 K. In fact, as we shall see in the following sections,
numerical simulations of the hybrid material indicate that the skyrmion stray fields
create antivortices in the superconductor, strongly coupling spin and flux topologies in
the SC-CM heterostructure.

6.5 Simulatedmagnetic states in [IrFeCoPt]/Nb heterostruc-
tures

To understand the effects of the skyrmion stray field on superconducting film
reported in experimental observations in Sec. 6.4, we next perform micromagnetic
simulations of the [IrFeCoPt]10 multilayers. The stray field of the skyrmionic textures
calculated in our simulations can be later used as input for numerical experiments within
the Ginzburg–Landau theory, which simulates the response of the superconducting Nb
layer.
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Figure 6.3 – Schematic of a stack of n � 10 magnetic layers considered in the simulations. The
layers are allowed to interact with each other only by the demagnetizing field.

In the micromagnetic simulations of the chiral ferromagnetic multilayer, we
consider a stack of n � 10 magnetic layers, each one of thickness 1 nm (representing the
Co/Fe layers in the [IrFeCoPt]10 system) and separated by 2 nm of vacuum (representing
the nonmagnetic I and Pt layers). The layers are allowed to interact with each other
only by the demagnetizing field and are discretized in micromagnetic cells of size
4 × 4 × 1 nm3 [see Fig. 6.3]. For the simulations we consider the parameters: saturation
magnetization Ms � 1.45 MA/m (determined from experimental data in Ref. [11]);
exchange stiffness A � 13.9 pJ/m and DMI strength D � 2.1 mJ/m2 (determined by
fitting simulated magnetizations to experimental zero-field MFM data; see Ref. [241] for
details). The out-of-plane anisotropy K � 1.4 MJ/m3 was determined as the best fitting
value which matched the skyrmion nucleation field to the experimental observations.

Fig. 6.4 (a) shows the simulated magnetic phase diagram of the chiral multilayer
as a function of applied field H, where the ground state is shaded blue for the helical
phase (HL), red for skyrmions (SK) and green for saturated ferromagnetism (FM). The
optimal configurations were determined by calculating the free energy for a broad range
of HL and SK periodicities at each applied field value. A typical simulatedmagnetization
in the skyrmion phase at H � 100 mT is shown in Fig. 6.4 (b). Notice that, even though
DMI in the considered system favors skyrmion helicity of γ � 0 [see, e.g., Sec 2.6.2], the
stray field of the multilayer system (which looks like a dipole pointing down) forces the
top layer to change its helicity to γ � π, as illustrated in Fig. 6.4 (c), which shows the
magnetic texture in a cut through skyrmion core. This indicates that demagnetizing
fields play an important role in the magnetic texture, as well as in the skyrmion size (in
this case rsk ≈ 46 nm).

For a better comparison between our simulations and experiments, it is important
to subject the simulated superconducting film to a realistic stray field from the chiral
magnet. Therefore, for the micromagnetic simulations, we have extracted the magnetic
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Figure 6.4 – (a) The energy of the magnetic states of a n � 10 multilayer as a function of applied
field H, as obtained in the simulations. The ground state is indicated by colored
shading, with blue for the HL state, red for the SkL state and green for the FM state.
(b) Typical ground state magnetic texture obtained in simulations at H � 0.1 T. The
color bar depicts the out-of-plane magnetic moment mz averaged over all 10 layers
and the white scale bar is 100 nm. (c) Cross-section of the magnetic texture inside
the skyrmion core, with the skyrmion stray field shown by black lines.

states from MFM images [see Sec. 6.4] at correspondent applied fields and use those
states as initial condition before relaxing magnetization. Fig. 6.5 shows the average
magnetization and correspondent magnetic textures obtained in the simulations as
a function of applied field. Black solid line in Fig. 6.5 (a) corresponds to the average
magnetization obtained experimentally, as shown in Sec. 6.4, which is well reproduced
by the simulations.

6.6 Antivortices induced by skyrmions

The response of the superconducting Nb layer to the stray field of the skyrmionic
textures can be calculated by numerical experiments within the Ginzburg–Landau
(GL) theory [Ref. [11] gives details on the GL calculations]. For that purpose, we
calculate the stray field of spin-textures in our magnetic multilayer, at a distance of 7 nm
(2 nm Pt + 5 nmMgO) above the film surface, i.e., at the plane of the superconducting
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Figure 6.5 – (a) Average magnetization and (b-f) magnetic textures obtained in the simulations
as a function of applied field. Black solid line in (a) corresponds to the average
magnetization obtained experimentally, as shown in Sec. 6.4, and white scale bars
in (b-f) correspond to 250 nm.

layer, according to the fabricated MIS samples [see Sec. 6.4]. Fig. 6.6 (a) shows an oblique
view of two skyrmions in the magnetic film and the superconducting film above them,
in presence of perpendicular external magnetic field of 125 mT, illustrating the stray field
of the skyrmions and its effect on the superconducting film. Both skyrmions generate
sufficient flux through the superconductor to induce antivortices there, as indicated by
the depreciation of the Cooper-pair density |Ψ|2 (GL simulations are performed for the
superconducting parameters referring to the 25 nm thick Nb layer [11]).

Generally speaking, each skyrmion domain carries negative flux, and therefore
induces vortex-like screening currents in the superconducting film. Those screening
currents are maximal above the domain wall of the skyrmion, and remain visible
even upon nucleation of the antivortex within the domain. Moreover, the screening
currents keep the antivortex above the skyrmion, separated from the surrounding
vortices induced by external magnetic field, as illustrated in Fig. 6.6 (b) (bottom row),
where vortices and antivortices are seen as red and blue dots, respectively. The vortex
states are obtained by GL simulations, with gradually decreasing the applied field Bext

from 150 mT to 0 mT, and using the stray fields of magnetic states corresponding to
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Figure 6.6 – (a) Oblique view of skyrmions in the chiral magnetic (CM) film, bellow the super-
conducting (SC) film. The top panel illustrates the piercing stray field of skyrmions
through the superconducting layer and the bottom panel shows the resulting
distribution of the Cooper-pair density (|Ψ|2) and the supercurrents (arrows) in
the superconductor. The color of the arrows differentiates the supercurrent of a
vortex (red), antivortex (blue), and the screening currents (grey). (b) Top row: the
out-of-plane component of the stray field of the magnetic multilayer, calculated
at a distance of 7 nm above the film surface, corresponding to the plane of the
superconducting layer (according to the fabricated MIS samples). Bottom row: the
corresponding magnetic response of the superconducting layer, calculated in the
GL simulations for superconducting parameters referring to the 25 nm thick Nb
layer. Vortices and antivortices are seen as red and blue dots, respectively. The
magnetic states correspond to Fig. 6.5, and the superconducting states are obtained
for sequentially decreased Bext .

Fig. 6.5 [see top row of Fig. 6.6 (b)]. At all considered Bext, antivortices are preserved
and localized above the skyrmions and stripe domains. Similar behavior is seen in the
GL simulations of the MS samples, only with more antivortices nucleated per skyrmion
due to larger stray field of the magnetic layer in the plane of the superconductor. In
this way, both experiments and simulations indicate that skyrmion stray fields create
antivortices in the superconductor.

6.7 Effect of the skyrmion stray field on vortex dynamics

In what follows, we briefly discuss the scenario where direct (dc) current is
applied to the superconducting film in the above considered heterostructure. It is well
known that under applied current the vortices in the superconductor are moved by
Lorentz force, which acts perpendicularly to the direction of the applied current [239].
Interestingly, the stray field of magnetic skyrmions significantly affects the vortex
dynamics. When skyrmions are present, the vortex flow interacts with the induced
antivortices. As discussed earlier, vortices avoid the negative field of skyrmions while
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Figure 6.7 – Effect of the skyrmion stray field on vortex dynamics, showing sequential snapshots
of the simulated Cooper-pair density as a function of time, for H � 100 mT. In each
snapshot the lower layer shows the magnetic moments in the chiral magnetic layer,
while the upper layer shows the Cooper-pair density in the superconducting film.
The dashed line indicates the position and direction of maximal supercurrent flow.

simultaneously repelling each other. This makes it difficult for the vortices to find the
optimal path to move through the sample, and they end up having to pass through
the skyrmions, which results in the scenario shown in Fig. 6.7. That is, the applied
current jex superimpose on the screening currents jM that are maximal above the
domain wall of a skyrmion, lowering the screening currents on one side (from which
the vortex is approaching) and enlarging it on the other (snapshot 1). That leads to the
annihilation of the skyrmion-induced antivortex and the incoming vortex (snapshot
2). On the opposite side of the skyrmion, as the current density exceeds the depairing
current, a vortex-antivortex pair is created (snapshot 3). The antivortex remains under
the skyrmion while the vortex takes the role of the incoming vortex and continues the
journey (snapshot 4).

6.8 Manipulation of isolated skyrmion-vortex pair

In order to provide an in-depth analysis and investigate the manipulation of
skyrmion-vortex pair (SVP) correlations, from now on through the end of this chapter,
we consider a single magnetic skyrmion interacting with a single superconducting
vortex in a magneto-superconducting bilayer. Fig. 6.8 illustrates the considered system,
an ultrathin ferromagnetic (FM) film of thickness d with perpendicular magnetic
anisotropy, e.g., a Co layer, coupled to a heavy metal (HM) layer (with a strong spin-orbit
coupling, thus inducing interfacial DMI) e.g., the heavy metal Pt (neither Co nor Pt
are superconductors at ambient pressure), placed on top of a superconducting film
of thickness ds, and separated by an insulating layer of thickness dI. The interaction
between the superconducting material and the FM film is solely through the magnetic
stray fields.

In this section, we do not consider the creation of (anti)vortices in the super-
conductor, as discussed in the previous sections. Instead, we focus on a pre-existing
skyrmion-vortex pair and explore the dynamics of themagnetic skyrmionwhen coupled
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Figure 6.8 – (a) Oblique view of the considered heterostructure. By tuning the competition
between the Lorentz force (LF), acting on the superconducting vortex, and the
magnetic torques acting on the skyrmion, one can control the resultant skyrmion
Hall effect (SHE) and the net direction of the skyrmion-vortex pair (SVP) motion.
(b) Schematic details of the considered system, a thin ferromagnetic (FM) film of
thickness d with perpendicular magnetic anisotropy, coupled to a heavy metal (HM)
layer with a strong spin-orbit coupling, placed on top of a superconducting (SC)
film of thickness ds, separated by an insulating layer of thickness dI, such that the
interaction between the superconducting and the ferromagnetic film is restricted to
only the magnetic stray fields.

to the superconducting vortex. We rely on the London approximation [Sec. 6.3] and
molecular dynamics simulations to describe the vortex behavior in the superconducting
layer, and the stray magnetic field of the (moving) vortices is used in the micromagnetic
framework to understand the static and dynamic response of the ferromagnetic layer
and skyrmion therein. For a description of the dynamic phases of the heterostructure
as a whole, we couple the molecular dynamics of vortices with the Thiele equation of
motion of skyrmions [Sec. 2.7.3]. In what follows, we give a short description of the key
ingredients in our theoretical analysis.

6.8.1 Micromagnetic model

For the micromagnetic simulations of the chiral ferromagnetic layer, we consider
the free energy resulting from the following magnetic interactions [Sec. 3.1.3]: exchange
interaction, perpendicular anisotropy, DMI, Zeeman interaction and demagnetization.
We approximate the demagnetization energy by using an effective anisotropy Keff � K −
1
2µ0M2

s , with K the perpendicular magnetic anisotropy and µ0 the vacuum permeability,
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which is justified for the case of ultrathin ferromagnetic films [16]. For the simulations
of the ultrathin ferromagnetic film We consider the following parameters: saturation
magnetization Ms � 580 kAm−1, exchange stiffness Aex � 15 pJm−1, and perpendicular
anisotropy K � 0.8 MJm−3 (Keff � 0.6 MJm−3), stemming from the experimental results
on Co/Pt systems [196, 197]. The used values of the DMI constant, D, will be specified in
the sections below, forwhat is useful to define the criticalDMI strengthDc � 4

√
AexKeff/π

above which spin-cycloids become the ground-state in the ferromagnetic sample [186].
The Zeeman interaction accounts for the external magnetic fieldB, which in this case will
be given by the vortex stray field. For all simulations, we consider a system discretized
into cells of size 1 × 1 × 0.4 nm3, with d � 0.4 nm the thickness of the FM film, and the
dynamics of the magnetization is governed by the LLG equation [Eq. 2.17].

6.8.2 Equation of motion for the center-of-mass of the skyrmion

Thiele equation describes the dynamics of the center-of-mass of the skyrmion by
assuming a rigid body motion of the spin texture [81, 93, 95, 96]. For the case of in-plane
applied current the Thiele equation reads [see Sec. 2.7.3]

G × (ν − Ûrsk) +D(βν − αÛrsk) − ∇V � 0, (6.8)

where G � G ẑ � 4πQ(dMs/γ)ẑ is the gyromagnetic coupling vector, with Q the
skyrmion number (in all simulations we consider Q � −1); Ûrsk � Ûxskx̂ + Ûysk ŷ is the
skyrmion drift velocity; V is the potential induced by the vortex field; ν � νx x̂ + νy ŷ is
associated to the velocity of the conduction electrons in the spin-polarized current, andD

represents the dissipative tensor,with componentsDi j � (dMs/γ)
∫

d2r∂im·∂jm � Dδi j

(see Appendix A.2). Eq. (6.8) can be rewritten into its two components, which yields

Ûxsk �
1
σ2
αα

[
σ2
αβνx +DG(β − α)νy + αDFx

sv + GFy
sv

]
,

Ûysk �
1
αD

[
G(νx − Ûxsk) + βDνy + Fy

sv
]
, (6.9)

where σab �

√
G2 + abD2, Fx

sv � −∂V/∂x, and Fy
sv � −∂V/∂y.

6.8.3 Static properties of the hybrid system

6.8.3.1 Effects of the vortex field on the uniform ferromagnetic state

Let us first consider the effects of the magnetic field of the vortex in the super-
conductor to the uniform ferromagnetic state in the adjacent magnetic film. Fig. 6.9
shows the magnetization profile obtained from micromagnetic simulations of a ferro-
magnetic film in the presence of the stray field of a single vortex [see Sec. 6.3] in a thick
superconducting film (ds � λ), for different values of the penetration depth λ of the
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Figure 6.9 – Canting induced in the uniform ferromagnetic state of the FM film due to the stray
field of the nearby superconducting vortex, as a function of the distance from the
vortex core. (a) For different values of penetration depth λ of the superconductor,
with dI � 10 nm and D � 0.8Dc fixed. (b) For different values of dI , with λ � 50 nm
and D � 0.8Dc fixed. (c) For different values of D, with λ � 50 nm and dI � 10 nm
fixed. Dashed lines indicate the corresponding magnetization profiles obtained
analytically usingEq. (6.13). (d)Contourplot of the z-component of themagnetization
in the vicinity of the vortex core (centered at (x ,y) � (0,0)), for λ � 50 nm, dI � 10 nm,
and D � 0.8Dc .

superconductor, thickness of the insulating layer dI , and DMI strength D. The polarity of
the magnetic field of the vortex is taken to be negative (pointing along the −ẑ direction).

Note that for small values of λ, where the magnetic flux induced by the vortex is
more localized, the corresponding canting of the magnetization in the FM film is more
pronounced. Also notice that, for the parameters considered in this section, the presence
of the superconducting vortex does affect the ferromagnetic ground state, but it is not
sufficient to nucleate a skyrmion as e.g. considered in Ref. [223]. In fact, assuming weak
variations of the local spin tilt angle θ, the magnetization profile induced by the stray
field of the vortex can be calculated by considering the micromagnetic energy density in
polar coordinates [242]

E2D[θ(r)] �2π
∫ ∞

0

[
Aex

(
dθ
dr

)2
+ Aex

sin2 θ

r2

− D
(

dθ
dr

+
cos θ sin θ

r

)
+Keff sin2 θ −MsBr sin θ −MsBz cos θ

]
rdr,

�

∫ ∞

0
E

(
θ,

dθ
dr
,r
)

dr,

(6.10)

where we assumedm � sin θ r̂ + cos θẑ, and Bv � Br r̂ + Bz ẑ is the stray field of a vortex
located at r � 0. In the limit of weak variations of the angle θ ( dθ

dr � 1 and θ � 1), the
energy density can be written as
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E (θ,θ′,r) � 2πr
[
−Dθ′ + θ2

(
Aex
r2 + Keff +

MsBz

2

)
+θ

(
−D

r
−MsBr

)
−MsBz + O(θ3) + O(θ′2)

]
,

(6.11)

where θ′ � dθ/dr. The Euler-Lagrange equation

∂E
∂θ
− d

dr

(
∂E
∂θ′

)
� 0 (6.12)

minimizes the energy functional and yields the following expression for the magnetiza-
tion profile:

θ(r) � Br(r)Ms
2Aex

r2 + 2Keff + Bz(r)Ms
. (6.13)

Fig. 6.9(a,b) shows that the above expression (dashed lines) nicely agrees with the
magnetization profile obtained in the micromagnetic simulations. Fig. 6.9(c) shows that,
as suggested by Eq. (6.13), θ(r) does not depend on the DMI parameter. Notice that this
expression is valid for any radial field such as that created by superconducting vortices,
magnetic dots, or nearby magnetic tips, provided that the uniform magnetic order is
only weakly perturbed. It will be useful now to define the radius of maximal canting,
rmax
θ , as given by θ(rmax

θ ) � max[θ(r)]. For the case of dI � 10 nm and λ � 50 nm, we
find rmax

θ ≈ λ. From here on, dI � 10 nm will be used in all remaining calculations,
unless stated otherwise.

6.8.3.2 Effects of the vortex field on the skyrmion size

The stray field of the vortex can affect the skyrmion size by favoring the rotation
of the spin texture in the direction of the flux lines, where the competition with other
magnetic interactions is relevant. For simplicity, we will only consider variation of
the DMI strength and fix all the remaining parameters of the ferromagnetic material.
By increasing the DMI strength one favors the rotation of the magnetization at short
length scales and reduces the energy barrier for the vortex field to flip the spins along
its direction, resulting in an increase of the skyrmion size. Fig. 6.10 shows how the
skyrmion size, calculated by micromagnetic simulations, is affected by the stray field
of a single vortex in a thick superconducting film (ds � λ), for different values of
D and λ, where skyrmion and vortex are on top of each other and concentric. For
each λ, if D ≤ D∗λ, the skyrmion radius ξsk is confined in a region ξsk < rmax

θ , and
increases its size abruptly to ξsk > rmax

θ when D exceeds D∗λ. The threshold state, where
ξsk ≈ rmax

θ , is unstable. From the simulations we calculate D∗λ ≈ 0.882Dc , 0.9275Dc

and 0.945Dc for λ � 50, 80 and 100 nm respectively. Notice that there is a range of
DMI (D < 0.85Dc for all considered λ’s) where the skyrmion size is weakly affected by
the presence of the superconducting vortex and ξsk approximately corresponds to the
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Figure 6.10 – Skyrmion radius when on top of a superconducting vortex, extracted from the
micromagnetic simulations, as a function of the DMI strength D. Dashed line shows
the skyrmion size in the absence of an external magnetic field. The insets show the
z component of the magnetization for λ � 50 nm, where dashed circles represent
r � rmax

θ i.e. area where vortex core has strongest influence on the ferromagnetic
state.

skyrmion size in the absence of any magnetic field (dashed line in Fig. 6.10). In this
case, the interaction energy is dominated by the difference in Zeeman energy due to the
presence of the vortex stray field. Nevertheless, the other terms are highly sensitive to
the change in the skymion shape and thereby give a non-negligible contribution to the
total vortex-skyrmion interaction energy (see Appendix A.4).

6.8.3.3 Skyrmion-vortex interaction

As shown in the previous section, the skyrmion-vortex interaction is stronger
when the domain wall of the skyrmion faces the maximal background canting, i.e., when
the skyrmion core is at a distance rc ≈ |rmax

θ − ξsk | from the vortex core. To numerically
calculate the spatial profile of the interaction energy between the skyrmion and the
superconducting vortex, we relax the magnetization in the micromagnetic simulation for
different positions of the vortex stray field, while keeping the magnetic moment at the
center of the skyrmion fixed, at a fixed location. This approach is similar to the method
used in Refs. [243–245] to calculate the interaction of the skyrmion with holes, sample
edges, or material defects. We consider the case of D ≤ 0.85Dc , where the skyrmion
profile is weakly perturbed by the presence of the vortex field (see Fig. 6.10). In such a
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situation we are sure that the fixed core will indeed represent the center of mass of the
skyrmion after relaxing the magnetization. Fig. 6.11(a,b) shows the interaction energy
calculated in these simulations, as a function of the distance between the skyrmion and
vortex cores, rsv, for different values of λ and DMI strength D, with ds � λ. Notice that
the obtained energy profile can be fitted numerically by the expression

E �
a

(r2
sv + bλ2)2

, (6.14)

with a and b the fitting parameters. The fitted curves are shown as dashed lines in Fig.
6.11(a,b). Insets show the corresponding interaction forces derived from Eq. (6.14).

For further analysis, we fix λ � 50 nm and D � 0.8Dc in the simulations, unless
specified otherwise.

The vortex in the superconducting film is assumed to be stabilized by an external,
perpendicular magnetic field, which also should be considered in the free energy of the
magnetic spin texture. In this section, we consider a sparse vortex lattice, hence small
fields, of the order 0.1 mT or smaller. In this limit, the induced vortices are separated by
distances larger than 5 µm (see, e.g., Ref. [246]), which is much larger than the length
scale λ of the skyrmion-vortex interaction. This situation therefore closely approaches
the idealized case of an isolated skyrmion-vortex pair considered in our calculations. In
addition, we have verified that external magnetic fields up to 5 mT produce a negligible
change in the skyrmion morphology for the considered magnetic parameters of the
sample, justifying our analysis in absence of the external magnetic field.

6.8.4 Skyrmion dynamics in the presence of a superconducting vortex

6.8.4.1 Vortex at rest

We start by describing the motion of the skyrmion induced by the interaction
with a pinned vortex in a thick superconducting film (ds � λ), without any other
applied drive. Fig. 6.11(c) shows the center-of-mass trajectories of the skyrmion in the
presence of the vortex field, calculated in the micromagnetic simulations with damping
parameter α � 0.02 and 0.3, where the vortex position is fixed at the center of the
simulation box and the skyrmion is initialized at a distance rsv � 2.4λ from the vortex
core. As shown in energetic considerations of the previous section, the skyrmion is
indeed attracted to the vortex core. A deflection in the azimuthal ϕ direction is induced
by the Magnus force (ϕ is the angular cylindrical coordinate with origin at the vortex
core position), and the skyrmion follows a spiral trajectory towards the center of the
vortex. Damping factor α controls the magnitude of the Magnus force relative to the
viscous drag and consequently the shape of the spiral trajectory. Similar trajectories are
observed, e.g., for the skyrmion approaching a pinning center [244, 247].
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Figure 6.11 – Skyrmion-vortex interaction energy calculated in the micromagnetic simulations
as a function of the distance between the skyrmion and vortex cores for (a)
different values of λ and fixed D � 0.8Dc , and (b) different values of D and fixed
λ � 50 nm. The curves fitted by Eq. (6.14) are shown as dashed lines. Insets show
the corresponding interaction force calculated as the derivative of the fitted curves,
where F0 � dAex/λ0 � 0.12 pN, with λ0 � 50 nm. (c) Trajectory of a skyrmion
dynamics in the presence of the vortex field, for α � 0.02 and 0.3, λ � 50 nm, and
D � 0.8Dc . Black dot indicates the initial position of the skyrmion and the arrows
the center-of-mass trajectories. Background colors show the z component of the
magnetization induced by the vortex in absence of a skyrmion, as shown in Fig.
6.9(d).

6.8.4.2 Vortex at constant speed

Let us next consider that a uniform current density, jSC, is applied into a
conventional superconducting material. The current induces a Lorentz force FL �

dsφ0jSC × ẑ, which acts on the vortex core, thus forcing the vortex to move and,
consequently, inducing the skyrmion motion as well. As a first approximation, in this
section we neglect the effects of the skyrmion to the vortex motion and consider the
vortex to move straight along the Lorentz force at a constant speed given by v � FL/η,
where η is the vortex viscous drag coefficient. As we shall discuss in more detail in
Sec. 6.8.4.3, this is a good approximation only when both the driving force and the
viscous drag acting upon the vortex are much stronger than the vortex-skyrmion force.

We performed micromagnetic simulations initializing the magnetic skyrmion
concentric to the vortex core and then moving the vortex field, in a rigid body motion,
along the +x̂ direction, with constant velocity v. Fig. 6.12(a) shows the corresponding
trajectories of the skyrmion for different values of v and for damping constant α � 0.02.
The skyrmion moves in cycloidal arcs created by the competition between the movement
along the x̂ direction imposed by the driven vortex and the deflection along the ϕ
direction with respect to the vortex. The maximal amplitude of the cycloidal trajectory
is approximately λ, which coincides with the maximal canting region defined by rmax

θ .
For v higher than an escape velocity, vc , the skyrmion crosses the r � rmax

θ region and
escapes from the confinement by the vortex field. The maximal amplitude ∆y of the
skyrmion trajectory as a function of the vortex velocity is shown in Fig. 6.12(c) for



6.8. MANIPULATION OF ISOLATED SKYRMION-VORTEX PAIR 138

Figure 6.12 – Trajectories of the center of mass of the skyrmion calculated in the micromagnetic
simulations for different values of the driven vortex velocity v, with damping
factor α � 0.02 (a), or α � 0.3 (b). (c) Maximal amplitude of the skyrmion trajectory
as a function of v, for different values of α, with fixed D � 0.8Dc . (d) Maximal
amplitude of the skyrmion trajectory as a function of v for different values of the
DMI strength and α � 0.02 fixed. Transition from solid to dashed line indicates
the escape velocity. Dash-dotted lines in (a) and (b) correspond to solutions of the
Thiele equations for the case v � 2.5 m/s (see text).

α � 0.02 and 0.3, with D � 0.8Dc fixed, and in Fig. 6.12(d) for different values of D
and α � 0.02 fixed. In the latter case, for D > D∗λ one has ξsk > rmax

θ and the skyrmion
trajectory no longer presents periodic arcs during the motion. Notice that the escape
velocity does not change considerably by changing from low to high damping regime,
however it strongly depends on the DMI parameter, as expected from the interaction
force in Sec. 6.8.3.3.

Similar cycloidal motion has been observed in Ref. [248] for a moving magnetic
field, where the authors stated that the skyrmion follows a periodic motion. However,
notice from Fig. 6.12(a) that the amplitude of the cycloidal arcs decreases as the skyrmion
moves further. In fact, by increasing the damping factor the dynamics changes from
underdamped to overdamped motion, as show in Fig. 6.12(b) for α � 0.3. Therefore, the
cycloidal motion is a transient motion, after which the trajectories converge to a situation
where the skyrmion moves along with the vortex, keeping a constant nonzero distance
from the vortex core position (thick dashed lines in Figs. 6.12(a,b)). This indicates that the
vortex core is no longer the minimal energy position for the skyrmion in the dynamical
system as it is for the system with a stationary vortex (v � 0).

The above behavior is better understood in the frame of reference of the moving
superconducting vortex. Fig. 6.13 shows the trajectories (indicated by arrows) of the
center-of-mass of the skyrmion calculated in the micromagnetic simulations for different
values of the vortex velocity, v, for α � 0.02 or 0.3, in the frame of reference of the
moving vortex. Each trajectory corresponds to a different initial position of the skyrmion
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Figure 6.13 – Arrows show the skyrmion trajectories calculated in themicromagnetic simulations
for different values of the vortex velocity, v, with α � 0.02 (a-d) and 0.3 (e-h), plotted
in the frame of reference of the moving vortex. Thin lines are the corresponding
trajectories calculated from the Thiele equation. Dots show the fixed points, where
open dots indicate saddle points and closed dots represent stable spiral points.
Background colors show the z component of the magnetization induced in the
absence of a skyrmion, as shown in Fig. 6.9(d).

with respect to the vortex core position. Notice that each point of the coordinate space
belongs to a unique and well defined trajectory which converges to a fixed point or
to infinity. Such dynamical behavior can be described in the Thiele formalism by the
equation of motion for the center of mass of the skyrmion (see Sec. 6.8.2). In this frame
of reference, the magnetic system is moving with velocity −vx̂ with respect to the vortex
and the skyrmion dynamics can be equivalently described by the situation where a
spin-polarized current is applied into the ferromagnetic film along the x̂ direction in the
particular case where α � β, and the vortex is at rest. In this case, in regions far from the
vortex core, where ∂V/∂r � 0, the skyrmion velocity is given by Ûrsk � ν � −vx̂. As the
skyrmion approaches the vortex, its trajectory can be attracted by one of the fixed points,
{r∗}, which can be calculated by setting Ûr∗sk � 0 in Eq. (6.9). In cylindrical coordinates,

ϕ∗ � arctan
(
G
αD

)
+ nπ (for v , 0), (6.15a)

∂V
∂r

����
r∗
� ±σααv , (6.15b)

where n � 0,1,2,... represent the solutions for both vortex (−∂V
∂r < 0) and antivortex

(−∂V
∂r > 0) if n is odd or even respectively. Comparing Eq. (6.15b) with the skyrmion-

vortex interaction force in Fig. 6.11 (insets), there can be 0, 1 or 2 fixed points for v > vc ,
v � vc , and v < vc respectively, where vc � Fmax

sv /σαα is the critical velocity. The stability
of the fixed points can be calculated either analytically, by the linearization of the
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equation of motion near the fixed points, or numerically, by iterating Eqs. (6.9) in discrete
steps of time. Here we apply the second approach, where we take α � β, νx � −v, νy � 0,
and force Fsv as calculated in Sec. 6.8.3.3. The value ofD was calculated as explained
in Appendix B. The corresponding trajectories and fixed points calculated from the
Thiele equation are shown in Fig. 6.13 as lines and dots, respectively, with the open dots
representing saddle points and the closed dots representing stable spirals. Notice that
the trajectories obtained from the micromagnetic simulations (blue lines) follow the
shape of the neighbouring trajectories calculated from the Thiele approach (black lines)
without crossing them (albeit with weak deviations), which indicates a good agreement
between both solutions. A direct comparison between both solutions is also shown by
the dash-dotted lines in Fig. 6.12 (a) and (b). Also notice that with increasing the vortex
velocity the fixed points approach until they annihilate around the region of maximal
background canting due to the vortex field.

6.8.4.3 Feedback effect of the skyrmion dynamics on the driven vortex

As a next step in the analysis, we introduce the feedback effect of the skyrmion
dynamics on the driven vortex dynamics by taking into account the vortex-skyrmion
interaction in the vortex equation of motion. For simplicity, here we consider the limit
ds � λ, where the currents in the superconducting film can be averaged over the film
thickness and the vortex-core dynamics can be approximated as one of a point particle.

The Bardeen-Stephen equation [249] describes the overdamped motion of the
vortex core, with terminal velocity Ûrv given by the force balance: ηÛrv � F, where η is
a viscosity coefficient and F comprises all other forces acting on the vortex core. In
this study we neglect the effects of vortex pinning in the superconductor, as well as
the intrinsic vortex Hall effect (negligible outside the superclean limit [250, 251]), and
write the force acting on the vortex core as F � FL − Fsv, with FL � dsφ0jSC × ẑ the
Lorentz force due to the current density jSC applied into the superconductor and Fsv the
skyrmion-vortex interaction force. Therefore, for the case of FL � FLx̂, the equation of
motion for the vortex core can be separated as

Ûxv �
1
η
(FL − Fx

sv),

Ûyv � −1
η

Fy
sv. (6.16)

The threshold current applied into the superconductor that breaks the skyrmion-vortex
pair (SVP) is reached when the vortex attains the critical velocity, i.e, ηvc � |F| �√
(FL − Fx

sv)2 + (F
y
sv)2. The critical value of FL then reads

Fc
L � max

[
|Fx

sv | +
√(
ηvc

)2 − (Fy
sv)2

]
. (6.17)
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Here vc � Fmax
sv /σαα, and we obtain

Fc
L �

(
1 +

η

σαα

)
Fmax
sv . (6.18)

Above this value, the fixed points of our dynamical system annihilate, and the skyrmion
is left behind when the vortex moves. On the other hand, for FL < Fc

L, the SVP remains
bound, and after a transient oscillatory motion, the pair reaches a steady state (the
dynamical system finds the stable fixed point), where the skyrmion and vortex move
with the same velocity, i.e., Ûxsk � Ûxv � vx and Ûysk � Ûyv � vy , with vx and vy constant.
By substituting that into Eqs. (6.9) and (6.16), one can calculate the resulting net angle
(direction) of the SVP motion with respect to the x̂ direction as Ω ≡ arctan(vy/vx). For
the case where there are no currents applied into the ferromagnetic film, i.e, νx � νy � 0,
one obtains

Ω � arctan
(
− G
αD + η

)
. (6.19)

In the previous section we have shown that the dynamics of the center-of-mass
of the skyrmion, described by the Thiele formalism, is in good agreement with the
micromagnetic simulations for the considered range of parameters where the skyrmion
size is weakly affected by the vortex field. Therefore, from here on, in all remaining
calculations, we assume the situation where the Thiele formalism correctly describes the
skyrmion motion and the skyrmion dynamics can be represented by its center of mass.
Weperform a series ofmolecular dynamics simulations of the combined skyrmion-vortex
system by numerically integrating the coupled Thiele [Eq. (6.9)] and Bardeen-Stephen
[Eq. (6.16)] equations. However, since we are now considering a thin superconducting
film, i.e. ds � λ, the monopole approximation is no longer accurate [240, 246] and
we numerically integrate Eqs. (6.6a) and (6.6b) to obtain the vortex stray field. The
interaction force is calculated as in Sec. 6.8.3.3 (see Appendix A.4). For the simulations
we consider λ � 50 nm and ds � 10 nm, however, the results presented in this section
can be easily generalized to other values of the parameters of the superconducting film.
We initialize the system with the skyrmion and vortex concentric and apply a constant
Lorentz force FL � FLx̂ to the vortex, i.e, an uniform current density jSC � − jSC ŷ is
applied into the superconductor. Panels (c-r) in Fig. 6.14 show the trajectories obtained
in the simulations, where Eq. (6.18) is used as reference for the considered parameters,
as indicated in Fig. 6.14(a). Fig. 6.14(b) shows that the observed angle of the resultant
motion of the SVP agrees with Eq. (6.19). Notice that now the skyrmion can experience
many different transient motions and follow different directions, depending on the
material parameters and Lorentz force. For high values of η, the dynamical system
converges to the one considered in the last section, where Ω goes to zero and the
vortex moves straight along the Lorentz force direction. For the limit of low viscosity of
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Figure 6.14 – (a) The critical force calculated from Eq. (6.18), for α � 0.02 and α � 0.3. The
labeled points represent the parameters (FL,η) considered in the simulations. (b)
Resultant direction (angle Ω) of the SVP motion with respect to the x̂ direction.
The open dots indicate the angle calculated from the simulations and solid lines
are given by Eq. (6.19). (c-r) Molecular dynamics simulations for labeled choices of
parameters in (a), with the vortex trajectories represented by dashed lines and the
skyrmion trajectories by solid lines.

the superconductor and ferromagnet, the SVP motion approaches the direction of the
current applied into the superconductor, i.e, perpendicular to the Lorentz force!

Typical experimental values of the viscous drag coefficient for thin films of
conventional superconducting materials are η/ds ∼ 10−8–10−6 Ns/m2. [250, 252, 253]
Comparing these values with the skyrmion dissipative-tensor D ≈ 2 × 10−16 Ns/m
calculated in Appendix B for the considered FM film, one finds η/D ∼ 0.5–500 for a
superconducting film of thickness ds ∼ 10–100 nm. Notice that, once the material has
been chosen, the relation η/D can still be tuned by changing the thickness of both FM
and SC films, as well as by changing the heavy metal capping layer, which in turn affects
the DMI and the skyrmion size. This allows for a high degree of controllability over the
angle π/2−Ω between the SVP motion and the current applied into the superconductor,
and thereby, over the different dynamical regimes shown in Fig. 6.14.

6.8.4.4 Guiding magnetic skyrmions by vortex-screened Hall effect

In this section we analyze the full potential for guiding magnetic skyrmions by
tuning the skyrmion-vortex Hall effect in FM-SC heterostructures. For that purpose,
we now consider that independent currents are applied into both FM and SC films.
As in the previous section, if one assumes that after a transient oscillatory motion the
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SVP reaches the steady dynamic state, where skyrmion and vortex move with the same
constant velocity, the angle of the SVP motion with respect to the x̂ direction, now with
νx ,νy , 0, becomes

tanΩ �
G

αD + η


Ξ1(νx +

βD
η νy)

Ξ2νx + Ξ3νy + (αD + η)FL
− 1

 , (6.20)

where

Ξ1 � σ2
αα + 2αDη + η2,

Ξ2 � σ2
αβ + βDη,

Ξ3 � GD(β − α − η/D).

The above equation describes the terminal motion of the SVP in a general situation
where currents are applied into both FM and SC films. Notice that the direction of the
terminal motion does not depend on the strength of the skyrmion-vortex interaction, it
depends only on the material parameters and the applied currents. The skyrmion-vortex
interaction will nevertheless define the critical forces under which the pair remains
connected. Similar expression has been obtained in Ref. [224] by a different approach,
where Lorentz force due to currents applied into the superconductor was not considered.
At this point, we call for attention to three different scenarios in Eq. (6.20). (i) The current
is applied only into the SC film. In this case we recover Eq. (6.19) by substituting νx � νy � 0
into Eq. (6.20), and 0 < Ω < π/2, as verified in Fig. 6.14(b). (ii) The current is applied only
into the FM film. This case is obtained by choosing FL � 0 in Eq. (6.20), where the case
of νx > 0 and νy � 0 results in −π/2 < Ω < Ω0, with Ω0 � tan−1[GD(α − β)/σ2

αβ] the
skyrmionHall angle in the absence of the vortex. In other words, the SVPHall-angle with
respect to currents applied into the ferromagnetic film, θ jFM

H � Ω, is always greater than
that observed in the absence of superconducting vortices. (iii) The current is applied into
both FM and SC films. In this case we explore two different situations of the spin-polarized
current, ν ‖ FL and ν ⊥ FL. The Lorentz force, F∗L, that compensates the SHE, i.e, that
makes the skyrmion move straight along the current direction, is obtained by setting
(Ω � 0, νx � ν, νy � 0) and (Ω � π/2, νx � 0, νy � ν) in Eq. (6.20) for ν ‖ FL and ν ⊥ FL
respectively:

F∗L �
Ξ1 − Ξ2
αD + η

ν, for (ν ‖ FL), (6.21a)

F∗L � − Ξ3
αD + η

ν, for (ν ⊥ FL). (6.21b)

Figs. 6.15 (a) and (b) show the trajectories calculated in the molecular dynamics
simulations for ν ‖ FL and ν ⊥ FL respectively, where we assume the typical values
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Figure 6.15 – Trajectories calculated in the molecular dynamics simulations for (a) ν ‖ FL, and
(b) ν ⊥ FL, where dashed and solid lines represent the vortex and skyrmion
trajectories respectively, for FL � F∗L ((green) solid shaded region), FL � F∗L + δFL
((blue) vertically striped region) and FL � F∗L − δFL ((red) horizontally striped
region). The dash-dotted line represents the skyrmion Hall angle in the absence of
the vortex. Takenparameters are α � 0.3, β � α/4, η � 2D and |ν | � 200ν0 ≈ 1ms−1,
with ν0 ≡ Fmax

sv /(αD + η). We use δFL � 160Fmax
sv in (a) and δFL � 3.2Fmax

sv in (b).

for Co/Pt samples α � 0.3, β � α/4, and η � 2D for the superconducting film, with
|ν | � 200ν0 ≈ 1 ms−1, with characteristic velocity ν0 ≡ Fmax

sv /(αD + η). Notice that for
FL � F∗L (solid shaded (green) regions in Fig. 6.15) the SHE is indeed canceled and
the SVP moves straight along the current direction. Also notice that by tuning the
Lorentz force one can control the direction of motion. By assuming the special cases of
Eqs. (6.21a) and (6.21b) in the expression for the SVP terminal velocity, one finds

v∗pair � ν, for (ν ‖ FL), (6.22a)

v∗pair �
β

α + η/D ν, for (ν ⊥ FL), (6.22b)

where v∗pair is the SVP velocity along the direction of applied current. The maximal
velocity forwhich the SVP remains bound together is obtained by substituting Eqs. (6.21a)
and (6.21b) into Eq. (6.17), with ν given by the critical limit of Eqs. (6.22a) and (6.22b),
yielding

v∗c �
Fmax
sv

D(α − β) , for (ν ‖ FL), (6.23a)

v∗c �
βDFmax

sv
Ξ3 − βDη

, for (ν ⊥ FL). (6.23b)

Fig. 6.16 shows that the above expressions are indeed in agreement with the results
obtained in the numerical simulations.

Notice that the stability of the SVP is directly related to the maximal value of
the interaction force, Fmax

sv . Therefore, we expect the threshold values to be enhanced
for: i) smaller penetration depth λ of the superconducting film, which concentrates
the magnetic flux in smaller regions, thus increasing the SVP interaction; ii) reduced
thickness of the insulating layer, which increases the magnetic field of the vortex acting
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Figure 6.16 – Skyrmion terminal velocity as a function of the applied polarized current, for
ν ‖ FL (black) and ν ⊥ FL (red), with FL given by Eqs. (6.21a) and (6.21b) so as to
compensate the skyrmion Hall effect. Solid lines indicate the expected SVP velocity
from Eqs. (6.22a) and (6.22b). Dots show the results obtained from the simulation,
where open dots indicate that the SVP has been broken and the skyrmion motion is
no longer aligned with current direction. Dashed lines denote the critical velocities
calculated from Eqs. (6.23a) and (6.23b).

on the FM plane; iii) stronger DMI in the FM film, which enlarges the core of the
skyrmion, thus aligns the magnetization of the core with the stray field of the vortex,
thereby increasing the SVP interaction.

6.9 Conclusion of the chapter

Precisely controlled dynamics of magnetic skyrmions in chiral ferromagnets has
become of great relevance for cutting-edge memory devices and information technology
applications. In this chapter, we have shown that skyrmion stray fields can nucleate stable
antivortices in engineered chiral magnet-superconductor heterostructures and that the
coexistence of these hybrid magnetic skyrmions with superconducting vortices creates
a complex yet controllable environment for exploring unique emergent flux dynamics.
We have demonstrated that such a hybrid system enables multiple possibilities for
manipulating the skyrmion-vortex pair, that are not possible for either constituent
separately. We analyzed the dependence of the skyrmion-vortex coupled motion on the
effective material viscosities, the exerted Lorentz-like force on vortices, and magnetic
torques acting on a skyrmion, and determined the threshold values of external drives
for which the skyrmion-vortex pair remains bound. Futhermore, we have calculated
the Hall-angle of the skyrmion-vortex pair with respect to currents applied into either,
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or both superconducting and ferromagnetic films, and have thereby demonstrated
the unprecedented tunability of the direction of motion for skyrmions in this hybrid
system. Bearing in mind the plethora of known manners for manipulating fluxonics in
superconductors by nanostructuring [254], and possibilities for similar manipulations of
skyrmions [81, 255–258], the results presented in this section opens a research direction
of hybridized dynamics in SC-CM systems that holds promise to reveal rich fundamental
phases and applicable effects.



Part III

Magnonics and spin-textures
in two-dimensional magnetic materials
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7
The role of suppressed nearest-neighbor

exchange in magnetic monolayers

High tunability of two dimensional magnetic materials (by strain, gating, het-
erostructuring or otherwise) provides unique conditions for studying versatile magnetic
properties and controlling emergent magnetic phases. Expanding the scope of achiev-
able magnetic phenomena in such materials is important for both fundamental and
technological advances. In this chapter, we perform atomistic spin-dynamics simulations
to explore the (chiral) magnetic phases of atomic monolayers in the limit of suppressed
first-neighbors exchange interaction.We report the rich phase diagram of exoticmagnetic
configurations, obtained for both square and honeycomb lattice symmetries, comprising
coexistence of ferromagnetic and antiferromagnetic spin-cycloids, as well as multiple
types of magnetic skyrmions. We perform a minimum-energy path analysis for the
skyrmion collapse to evaluate the stability of such topological objects, and reveal that
magnetic monolayers could be good candidates to host the antiferromagnetic skyrmions
that are experimentally evasive to date.

The results presented in this chapter are published in Physical Review B, 101,
214429. (2020).

7.1 Motivation

Magnetism in two dimensions (2D) has recently drawn immense attention of
both theoretical and experimental research, due to its fundamental significance and
promising technological applications[259, 260]. Magnetic 2D atomic crystals present a
diapason of possibilities for controlling magnetic interactions by different composition
and structural arrangements[261–264], as well as engineering techniques[265, 266]. The
competition between the magnetic interactions in such 2D materials, e.g., crystalline
anisotropy, exchange, dipole-dipole, Dzyaloshinskii-Moriya interaction[73, 88] (DMI),
etc., is likely to lead to a wide range of physical phenomena and novel magnetic phases.

https://journals.aps.org/prb/abstract/10.1103/PhysRevB.101.214429
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.101.214429
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It is well known that the exchange interaction between neighboring spins of a magnetic
system plays a determinant role in resulting magnetic configurations. Interestingly,
the exchange coupling of magnetic monolayers can be tuned in a multitude of ways.
For example, a manganese monolayer presents ferromagnetic (FM) order when grown
on the (001) surface of tungsten substrate[267], but presents antiferromagnetic (AFM)
order when grown on tungsten (110)[268]. Ref. [261] claimed based on first-principles
calculations that the nearest-neighbor (NN) exchange interaction of an iron monolayer
on the (001) surface of a TaxW1−x alloy can be continuously tuned from FM to AFM
coupling by varying the Ta concentration in the substrate, and that in the situation
of weak NN exchange nontrivial magnetic configurations can be achieved. Similarly,
Ref. [269] showed that the ground state of a Fe monolayer on top of different 4d and 5d
nonmagnetic metals can be continuously manipulated from FM to AFM by in-plane
biaxial and uniaxial strain on the substrates. Ref. [263] demonstrated tunability of the
exchange interaction by changing the stacking order of Fe/5d bilayers on Rh(001). The
exchange interaction can also be tuned by strain in magnetic 2D monolayer chromium
trihalides CrX3 (with X = I, Cl and Br), continuously from FM to AFM one[266].

In addition to this (symmetric) exchange interaction, the asymmetric DMI plays
an important role in the ordering of a magnetic system. As discussed in Sec. 2.3.3, instead
of (anti)parallel spins, DMI favors the rotation of magnetization at short length scales,
giving rise to chiral spin structures, such as cycloids and magnetic skyrmions. DMI can
be tuned in 2D magnets by breaking inversion symmetry, e.g., in Janus structures of
chromium trihalides [264] and manganese dichalcogenides[270], or at the interface of
the magnetic monolayer with a heavy-metal substrate[271].

In spite of the many possibilities for tuning exchange interactions in 2D magnets,
the resultant magnetic states of such systems remain scarcely investigated. Therefore, in
this chapter we explore the magnetic phases of chiral magnetic monolayers, such as Fe
monolayer and CrX3 lattices, in the limit of suppressed NN exchange interaction. We
present the rich phase diagram obtained for both square and honeycomb symmetries,
where exotic magnetic configurations can be stabilized. There we reveal states with
coexisting FM and AFM spin-cycloids and magnetic skyrmions, as well as the novel
p-AFM skyrmion state, and explore stability of magnetic skyrmions when dominated
either by NN or second-nearest-neighbor (SNN) exchange coupling.

7.2 Theoretical modeling

In the following sections we perform atomistic spin simulations to capture
possible magnetic phases of the considered magnetic monolayers. The simulations
are primarily based on the simulation package Spirit [38]. The extended Heisenberg
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Hamiltonian of the considered classical system of spins, in absence of applied magnetic
field, is given by [see Sec. 3.1.2]

H � −
∑

<i , j>sd

Ji jni · n j −
∑
<i , j>st

Di j · (ni × n j)

− 1
2Dddi

∑
i , j,i

3(ni · r̂i j)(n j · r̂i j) − (ni · n j)
(ri j/r0)3

− K
∑

i

(ni · ẑ)2, (7.1)

where ni � µi/µ is the ith spin orientation, with µi the magnetic moment of the ith

atomic site and |µi | � µ. Ji j is the exchange coupling, where we define J1 and J2 as the
NN and SNN exchange coupling respectively;Di j � D(r̂i j × ẑ) is the DMI vector, with
D the DMI strength and ri j the vector connecting spins i and j. K is the perpendicular
magnetic anisotropy and Dddi � µ0µ2/(4πr3

0) defines the magnitude of the dipole-
dipole interaction (DDI), with r0 the nearest-neighbor distance and µ0 the vacuum
permeability. <>st and <>sd denote summation up to first and second-neighbors sites
respectively. For the dipole-dipole interaction we make use of fast Fourier transforms
and the convolution theorem [272] adapted to treat arbitrary spin lattice configurations,
as implemented in Spirit, which reduces significantly the computational effort. Moreover,
a direct summation of dipoles has been performed in order to verify selected results.
Although thermal fluctuations play an important role in the stability of any spin texture,
in this chapter we describe all the fundamental states emerging from the competing
interactions due to tuned exchange terms and leave the limitations brought by thermal
effects for a separate study. The energy minimization is performed using a Verlet-
like velocity projection method [38, 132], which accelerates convergence towards local
minima and avoids overstepping due to momentum considered in the standard LLG
equation [167, 168].

When constructing the equilibrium phase diagram of a spin system in the space
of two relevant parameters in Eq. 7.1 (e.g. J1 and J2), the spin-relaxation simulations
are performed for a uniform 10 × 10 matrix of values within the parametric range of
the phase diagram. For each selected point of the phase diagram the spin system is
initialized from a random configuration and the energy is minimized numerically for
a sufficient number of different initial states in order to identify the configurations
of lowest energy. In the following step, the energies of all found configurations were
evaluated on a high-density grid in the parametric space (typically a 200× 200 grid) and
compared with each other in order to obtain the phase boundaries. In the simulations, a
spin lattice with 102 × 102 unit cells is considered, with one and two spins per unit cell
for the cases of square and honeycomb lattices respectively, unless otherwise specified.
Periodic boundary conditions are considered along the two dimensions of the system.
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For DDI calculations, four images of the spin system are considered along the two
dimensions. In the case of incommensurate phases such as cycloids, we ensured that
the considered system size is much larger than the periodicity of the final state.

7.3 Competing exchange interactions

In this chapter we are interested in magnetic configurations that emerge in
the limit of vanishing nearest-neighbor exchange interaction. In order to be able to
systematically discern effects from different types of interactions, we remove DMI and
anisotropy and examine purely the effects of tuning the exchange coupling between both
nearest-neighbor and second-nearest-neighbor sites, with dipole-dipole interactions
taken into account.

7.3.1 Square lattice

We first consider a square lattice of spin sites, representative of e.g. Fe monolayer
on a substrate [261]. Fig. 7.1 (A) shows the ground-state phase diagram obtained
in the numerical experiments based on Eq. 7.1. The corresponding minimal energy
configurations belonging to different regions of the phase diagram in Fig. 7.1 (A)
are depicted in Fig. 7.1 (B-D). For dominating nearest-neighbor exchange interaction
(| J1 | > 2| J2 |), only two states can occur, the FM state [Fig. 7.1 (B)] for J1 > 0, and the
checkerboard c(2x2)-AFM state [Fig. 7.1 (C)], also referred to as c-AFM, for J1 < 0. Notice
that dipole-dipole interaction favors in-plane spin configurations except for the c-AFM
phase, where the “head-to-head" arrangement of spins is not energetically favored,
forcing the system to align out of plane. However, if J2 < −| J1 |/2 the exchange term
in Eq. 7.1 favors the so-called p(2x1)-AFM ordering [see Fig. 7.1 (D)], also referred to
as p-AFM. The p-AFM state is a degenerate solution of the Heisenberg Hamiltonian
with respect to rotation of consecutive spins by an angle of ±Ω, with exchange energy
Eex � 4J2 per spin. Ferriani et al.[261] demonstrated that such degeneracy can be lifted
by higher-order interactions such as four-spin and biquadratic ones, where noncollinear
states, i.e. with Ω , 0, are favored. Here we observed that the presence of dipole-dipole
interactions favors collinear configurations. However, for dominating exchange energy,
even small fluctuations of the spin configurations can overcome the dipolar ineractions
so that noncollinear domains can coexist with the collinear ones. In such conditions,
even though the state shown in Fig. 7.1 (C) remains the ground state of the system, the
states similar to the one shown in Fig. 7.1 (E) become increasingly stable and frequently
appearing. Such AFM states are similar to those obtained for pure dipolar systems on a
square lattice[273].
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Figure 7.1 – (A) Phase diagram for a square monolayer lattice for different values of exchange
couplings J1 and J2, in the presence of dipole-dipole interactions, for K � D � 0.
(B-D) Ground-state magnetic phases, corresponding to nomenclature indicated in
(A). Note that in case of dominating exchange interaction the non-collinear and
collinear states become nearly energetically degenerate within phase I, so that states
similar to the one shown in panel (E) frequently appear as stable.

7.3.2 Honeycomb lattice

In Fig. 7.2 (A) we show the phase diagram for the honeycomb lattice symmetry,
analogous to the one of Fig. 7.1 (A) obtained for the square lattice. In the honeycomb
case, the non-trivial structure, as well as the mismatch in the number of NN and SNN
bonds of the honeycomb lattice give rise to several more magnetic phases. Furthermore,
one should note that the SNN bonds form a triangular lattice, which is intrinsically
frustrated under AFM coupling, which can lead to non-trivial spin textures. For the case
of J2 > 0, the FM and AFM states (phases II and III in Fig. 7.2) are analogous to the ones
observed in the square lattice. On the other hand, for dominating J2 < 0 two degenerate
lattices of spin-loops are obtained, shown in Fig. 7.2 (B) and (C). Such magnetic phases
are similar to those found for multiferroic hexagonal compounds[274, 275], which
in that case are associated to the Γ1 and Γ3 irreducible representations of the P63cm
space group[276]. In our system the spin-loop configurations are also favored by the
dipole-dipole interactions[277]. By increasing the magnitude of | J1 |, the competing NN
and SNN coupling give rise to spin cycloids (phases IV and VII in Fig. 7.2), collinear
AFM states (phases V and VIII in Fig. 7.2) and vortex-like configurations (lattice of FM
vortices in phase VI and a lattice of AFM antivortices in phase IX, see Fig. 7.2). We
notice that for J1 > 0 the spins tend to form pairs of rows with same orientation [see e.g.
Fig. 7.2 (H)] due to the FM NN coupling and the cycling of the spins in the cycloidal
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Figure 7.2 – (A) Phase diagram for a honeycombmonolayer lattice for different values of exchange
couplings J1 and J2, in the presence of dipole-dipole interactions, for K � D � 0.
(B-K) Ground-state magnetic phases, corresponding to labeling indicated in panel
(A).

phase [Fig. 7.2 (F)] is of the Néel type. In contrast, for J1 < 0, the spins are aligned in
single rows and the cycloids are of the Bloch type.

7.4 Suppressed nearest-neighbor exchange in the square
lattice

Having understood the competing effects between the nearest-neighbor and
second-nearest-neighbor exchange and dipolar interactions, we proceed to examine
spin configurations in the limit of vanishing NN exchange interaction. We start with
the square lattice, which, due to its simpler geometry, allows for a more illuminating
analysis of cycloids and skyrmions induced by suppressed NN exchange. Moreover,
as will be shown, the square lattice encompasses all the main ingredients behind the
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Figure 7.3 – Phase diagram for a square monolayer lattice for vanishing nearest-neighbor
exchange interaction. (A) As a function of the second-nearest-neighbor exchange
J2 and the DMI strength D, for K � 0. (B-D) As a function of magnetic anisotropy
K and DMI strength D, for J2 � 0 (B), J2 � 300Dddi (C) and J2 � −300Dddi
(D). The patterned region in (B) indicates disordered configurations. (E-I) Spin
configurations corresponding to phases indicated in (A-D). Solid lines in panels (A),
(C, (D) represent analytical solutions for the phase boundaries of the cycloidal states
derived in Sec. 7.4.1.

physics of the chiral magnetic textures in the 2D limit. Supplementary notes on the
honeycomb lattice case are given in subsection 7.5.

In Fig. 7.3 (A) we show the phase diagram for the square lattice, obtained for
J1 � 0, as a function of J2 but also as a function of increasing DMI. For negative values
of J2, increasing DMI strength favors the formation of p-AFM spin-cycloids, shown
in Fig. 7.3 (H), while for positive J2 we report the coexistence of FM and c-AFM spin-
cycloids with opposite chiralities [Fig. 7.3 (I)]. Notice that when neglecting the DDI term
in the Hamiltonian [Eq. 7.1], the FM and c-AFM states are energetically degenerate for
the case of J1 � 0 and J2 > 0 (see also Fig 7.10 for a better visualization of the coexisting
FM and c-AFM domains). For the case of dominating DMI energy, all spins are forced
orthogonal to each other, driving a transition to an emergent spin-ice type of state (V-a),
of checkerboard symmetry with four spins pointing in or four spins pointing out of a
same tetragon, or a degenerated striped state (V-b), shown respectively in Fig. 7.3 (E)
and Fig. 7.3 (F). The effects of anisotropy interaction (parameter K in the Hamiltonian)
are shown in Fig. 7.3 (B-D) for J2 � 0, 300Dddi and −300Dddi respectively. For J2 � 0 the



7.4. SUPPRESSED NEAREST-NEIGHBOR EXCHANGE IN THE SQUARE LATTICE 155

Figure 7.4 – Schematic representation of the lattice indices and spin angle θ considered in the
calculations in Sec. 7.4.1.

in-plane order of state V is preserved and the z component of the spins are continuously
deformed by anisotropy interaction. For J2 > 0, the out-of-plane (in-plane) anisotropy
favors the c-AFM (FM) state, while for J2 < 0 the out-of-plane anisotropy gives rise to
the out-of-plane p-AFM state, shown in Fig. 7.3 (G).

7.4.1 Phase boundaries

As will be shown in this section, analytical expressions can be derived for most of
the phase boundaries in Fig. 7.3. In that derivation we consider the extended Heisenberg
Hamiltonian in Eq. 7.1 with suppressed NN exchange interaction, and initially neglect
the dipole-dipole interaction. For a simplified analysis, we assume the cycloidal phases
are characterized by uniform rotation of the spins along one easy axis, say x. Accordingly,
the angle θ of a spin in the cycloid with respect to the ẑ axis is modelled as

FM θm ,n �
2πm
Np

, (7.2)

c-AFM θm ,n � −2πm
Np
− π[1 − (−1)m+n], (7.3)

p-AFM θm ,n �
2πm
Np
− π[1 − (−1)n], (7.4)

where index m (n) counts spin rows parallel (perpendicular) to the x axis (see Fig. 7.4)
and Np is the number of spins involved in one period of the cycloid, which is to be
determined after minimization of the free energy.

The DMI contribution to the energy of the system can easily be calculated by
noticing that in all the above described cycloidal configurations only spins linked
along the x direction have nonzero DMI energy. In this case Di j � − ŷD, ni × n j �

− ŷ sin(θm+1,n − θm ,n) � − ŷ sin(2π/Np), and thereby the total DMI energy is EDMI �
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−ND sin(2π/Np). For the total SNN exchange energy EJ2, we sum up terms like
ni · n j � − cos(θm±1,n − θm ,n) � σ cos(2π/Np), where σ � 1 for positive exchange
interaction (phases FM and c-AFM) and σ � −1 for negative exchange interaction (phase
p-AFM). Therefore, for all three cases, EJ2 � −2| J2 | cos(2π/Np). Finally, the contribution
of anisotropy to the total energy is given by EK � −K

∑
m ,n cos2 θm ,n , which, by assuming

that N/Np is an integer, leads to EK � −1
2 NK. The total energy of the cycloidal phases is

then given by E/N � −2| J2 | cos(2π/Np) − D sin(2π/Np) − K/2. Minimizing the energy
with respect to Np yields

Np �
2π

tan−1(D/2| J2 |)
(7.5)

and
E
N

� −
√

4| J2 |2 + D2 − K
2 . (7.6)

Similar expressions can be obtained for the case of dominating NN exchange
interaction, leading to the well-known dependence of the cycloid period on the ratio
D/J[278, 279]. In order to delineate the boundaries of the cycloidal phases, we compare
Eq. 7.6 with other (non-cycloidal) candidates to ground-state configuration. First, we
consider phase V (see Fig. 7.3). This phase is dominated by DMI interactions, where all
neighboring spins are orthogonal to each other, so that EJ2 � 0. The DMI and anisotropy
contribution to the energy can be calculated trivially, resulting in a total energy per spin
E/N � −

√
2D − K/2. The critical DMI value, calculated by comparing this result with

Eq. 7.6, is given by Dc � 2| J2 | [see solid black lines in Fig. 7.3 (A)], irrespective of the
anisotropy parameter K. Below this value, the cycloidal phases are favored against the
homogeneous configuration V.

As shown in Fig. 7.3 (C) and (D), the cycloidal phases also become unstable above
a certain value of the anisotropy parameter. For positive K, the c-AFM phase (III) is
potentially favored for J2 > 0, while for J2 < 0, the p-AFM (VII) becomes the potential
candidate. Their energy per spin is simply E/N � −2| J2 | − K. Comparing with Eq. 7.6,
we get Kc � 2

√
4| J2 |2 + D2 − 4| J2 | (see solid black lines in Fig. 7.3 (C) and (D)).

For K ≤ 0, the cycloids decay into phases I and II, which are significantly
influenced by the dipole-dipole interaction. For those cases, the demagnetizing energy
can be approximated by an in-plane contribution to the effective anisotropy[16] Keff �

K − Kddi, and the critical curves for K ≤ 0 are simply shifted by a factor of Kddi (see
dashed and dashed-dotted lines in Fig. 7.3 (C) and (D)). The same curves can be plotted
for the case K � 0 as shown in Fig. 7.3 (A), where we used Kddi � 3.8Dddi and 2Dddi for
the phase boundaries II-VI and I-IV respectively.
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Figure 7.5 – Néel Domain wall structure for the c(2x2)-AFM state (A), FM state (B), between FM
and AFM states (C) and p(2x1)-AFM state (D).

7.4.2 Domain walls and magnetic skyrmions

Domain walls (DW) and magnetic skyrmions are promising candidates for
technological applications, especially for spin-based information processing andmemory
devices. In this sectionwe look for suchmagnetic configurations in the limit of suppressed
NN exchange coupling. Fig. 7.5 summarizes different types of domain walls obtained
in our simulations. For J2 > 0 the well-known c-AFM DW [Fig. 7.5 (A)] and FM DW
[Fig. 7.5 (B)] are found. However, since the FM and c-AFM states can coexist in this region
of the phase diagram, a DW between the two phases is necessary to stabilize the spin
system, as shown in Fig. 7.5 (C). In this case, only one sublattice of the c-AFM structure
is rotated to form the FM state. For J2 < 0 the p-AFM DW [Fig. 7.5 (D)] is the only one
found. Due to such possibilities for different types of DW one also expects a variety of
magnetic skyrmions in this system. Isolated magnetic skyrmions are expected to be
(meta)stable for the combination of microscopic parameters that yields K > Kc , where
the background magnetization, either FM or AFM, is aligned out of plane. Fig. 7.6 (A)
shows an example of FM and c-AFM skyrmions coexisting for J2 > 0 (see also Fig 7.10
for a better visualization of the coexisting FM and c-AFM skyrmions), and Fig. 7.6 (B)
shows the p-AFM skyrmion obtained for J2 < 0 - which to our knowledge is the first
such skyrmion reported in literature. One should note that the FM-AFM DW [as shown
in Fig. 7.5 (C)] can not form a stable topological object by enclosing itself (contrary to its
FM or AFM counterparts, since in this case only half of the spins would rotate across
the domain wall and the resultant net topological charge is non-integer).

Now, let us compare the influence of bothNNand SNNexchange on the skyrmion
stability. For that purpose we analyze the energy of an isolated c-AFM skyrmion, which
can be stabilized by both J1 and J2. In Fig. 7.6 (C) we show the c-AFM skyrmion energy
calculated for (i) J1 � 0, J2 � J, and (ii) J1 � −J, J2 � 0, where we fixed the parameters
K � 3 meV and D � 5 meV in such a way that the skyrmion can be stabilized for | J2 |
similar to that obtained in Refs. [261, 269], where | J1 | ≈ 0. Notice that in case (i) one can
stabilize skyrmions with equivalent energy but for smaller values of J when compared



7.4. SUPPRESSED NEAREST-NEIGHBOR EXCHANGE IN THE SQUARE LATTICE 158

Figure 7.6 – (A) State with coexisting FM and c-AFM skyrmions, obtained for J2 > 0. (B) The
p-AFM skyrmion, obtained for J2 < 0. (C) Skyrmion energy as a function of exchange
coupling for (i) J1 � 0, J2 � J, and (ii) J1 � −J, J2 � 0, both with K � 3 meV and
D � 5 meV. (D) Minimal-energy-path calculations for the isotropic collapse of the
c-AFM skyrmion in both cases (i) and (ii). Here, the reaction coordinate defines the
normalized (geodesic) displacement along the formation path and the activation
energy Ea is defined by the highest-energy point along the path.

to the case (ii), which indicates that SNN exchange can dominate the skyrmion energy
over small values of J1. Fig. 7.6 (D) shows the minimal-energy-path calculations for the
isotropic collapse of the c-AFM skyrmion in both cases (i) and (ii), where the activation
energy, Ea , is calculated by the geodesic nudged elastic band method [132, 151] with the
help of a climbing image method [134], both implemented in the simulation package
Spirit, allowing an accurate determination of the highest-energy saddle point along
the minimal energy path connecting the two states. Notice that, for both cases (i) and
(ii), the activation energies have the same order of magnitude, which indicates that the
skyrmions stabilized by dominating SNN exchange interaction present similar stability,
and consequently similar lifetime[151, 280], to those stabilized by dominating NN
exchange coupling. Notice that even though for some parameters the energy difference
between initial and final states can be the same for both cases (i) and (ii), the skyrmion
profiles are not identical (e.g., the domain wall width depends on exchange), which
may cause the difference in the activation energy. Finally, the stability of the p-AFM
skyrmion was found to be the same as the stability of the c-AFM skyrmion, as long as
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Figure 7.7 – (A) Phase diagram for the honeycomb lattice for varied second-nearest-neighbor
exchange J2 and DMI strength D, for vanishing nearest-neighbor exchange and
K � 0. (B-E) The spin textures corresponding to the characteristic magnetic phases
in panel (A).

the same values of | J2 | are considered.

7.5 Suppressed nearest-neighbor exchange in the honey-
comb lattice

The honeycomb lattice symmetry is representative of a variety of magnetic 2D
materials, and is hence of particular recent interest. Notice that for a complete description
of truly 2D magnetic materials (such as monolayer CrI3) one should consider more
magnetic interactions in the Hamiltonian, such as the Kitaev interaction [281]. In the
present consideration, for simplicity and clarity, but also in order to provide a fair
comparison between square and honeycomb lattice symmetry, we do not include those
additional magnetic interactions in our spin system. Fig. 7.7 (A) exhibits the phase
diagram obtained for the honeycomb lattice, for zeroed NN exchange coupling (J1)
and anisotropy (K), in the presence of dipole-dipole interactions, and for varied SNN
exchange (J2) and DMI strength (D). Similarly to the square lattice, for J2 > 0, increasing
DMI favors FM and AFM spin cycloids (see Fig. 7.7 (E), and also Fig. 7.10 for a better
visualization of the coexisting FM and AFM states). For dominating DMI interaction all
spins are forced orthogonal to each other, as shown in Fig. 7.7 (C) and Fig. 7.7 (D) (phase
XI). Since in the honeycomb lattice the SNN bonds form a triangular lattice, which is
frustrated under AFM coupling, the analogous forms of the p-AFM state and the p-AFM
skyrmion found in the square lattice can not be obtained for J2 < 0. Instead, for J2 < 0
we obtained frustrated AFM spin cycloids (shown in Fig. 7.7 (B), also in Fig. 7.11 (A)).
In Fig. 7.8 (A) we show that this configuration can actually be decomposed into six
sublattices, each of which exhibiting a cycloidal behavior - as seen in the orientation
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Figure 7.8 – (A) Decomposition of phase X (obtained in the phase diagram for the honeycomb
lattice for J1 � 0, J2 < 0 and D > 0) into six spin-sublattices (s1-s6). (B) Orientation
of spins around the unit sphere, demonstrating the sublattice-specific cycloidal
behavior.

of spins shown in Fig. 7.8 (B). Due to the honeycomb symmetry of the lattice, the
anti-parallel AFM coupling between the SNN spins can not be satisfied at all bonds and
the system is therefore frustrated, causing this unique cycloidal spin state.

Such frustrated cycloid presents the same period in each one of the six spin-
sublattices (named s1 to s6), but its oscillations are not in-phase, as shown in Fig. 7.8 (A).
In addition, the cycloid rotation is not unidirectional, with three sublattices (s1, s2, s3)
rotating across the other three (s4, s5, s6), as seen in the orientation of spins shown
in Fig. 7.8 (B). In the Fig. 7.11 (B) we show the optimized cycloid period λ, after we
found the minimum in the average energy density as a function of the cycloid period for
different values of the DMI strength D. As expected for the conventional spin-cycloids
(see, e.g, Eq. 7.5), one sees there that increasing the DMI favors the rotation of the
magnetization in shorter periods.

To conclude the comparison to our previous findings for the square lattice, in
Fig. 7.9 (A) we show an example of FM and c-AFM skyrmions coexisting for J2 > 0 in
the honeycomb lattice symmetry. Similarly to the analysis made in the preceding section,
we have calculated the energy of an isolated AFM skyrmion and performed minimal-
energy-path calculations to evaluate the influence of both NN and SNN exchange to the
skyrmion stability. As in the square lattice, both kinds of skyrmions have equivalent
energies [see Fig. 7.9 (C)] but their stability falls in different ranges of the exchange
intensity | J |, with the SNN-stabilized skyrmion occurring at considerably smaller values
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Figure 7.9 – (A) State with coexisting FM and AFM skyrmions, obtained for J2 > 0 in the
honeycomb symmetry. (B) Skyrmion energy as a function of exchange coupling for
(i) J1 � 0, J2 � J, and (ii) J1 � −J, J2 � 0, both with K � 3 meV and D � 5 meV. (D)
Minimal-energy-path calculations for the isotropic collapse of the AFM skyrmion
in both cases (i) and (ii). Here, the reaction coordinate defines the normalized
(geodesic) displacement along the formation path and the activation energy Ea is
defined by the highest-energy point along the path.

of | J |. Finally we note again that, contrary to the square-lattice case, skyrmions with
a p-AFM background are not possible in the honeycomb lattice because, as discussed
above, AFM ordering is frustrated on a triangular lattice of second-nearest neighbors.

7.6 Conclusion of the chapter

The advent ofmonolayermaterials over the last decade, freestanding or deposited,
raises questions whether such systems can harbor unique magnetic properties and
potential for technological applications. It is primarily the vast tunability of magnetic
interactions in such magnetic monolayers that can lead to unexpected physical phe-
nomena and magnetic phases. Here, we have given a step in that direction, revealing
the rich magnetic phase diagram for both square and honeycomb symmetries of a
magnetic monolayer, in the limit of suppressed nearest-neighbor exchange interaction.
With underlying expectation of degenerate ferromagnetic and antiferromagnetic states
promoted by the absence of the nearest-neighbor exchange, the competition between
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Figure 7.10 – Larger visualization of coexisting FM and AFM spin textures. (A) An example
of the state with coexisting FM and AFM domains, obtained in the square lattice
for J2 � 300Dddi, K � 0 and D � 80Dddi (phase VI in Fig. 7.3). (B) State with
coexisting FM and AFM skyrmions obtained in the square lattice for J2 � 300Dddi,
K � 25Dddi and D � 100Dddi. (C) A state with coexisting FM and AFM domains
obtained in the honeycomb lattice for J2 � 300Dddi, K � 0 and D � 180Dddi (phase
XII in Fig. 7.7). (D) State with coexisting FM and AFM skyrmions obtained in the
honeycomb lattice for J2 � 300Dddi, K � 25Dddi and D � 200Dddi. Notice that the
diamond shape of the textures shown in (C) and (D) is the actual shape of the unit
cell in the calculations for the honeycomb lattice symmetry. In these simulations
we have considered a spin lattice of 102 × 102 spins for (A) and (C) and 200 × 200
spins for (B) and (D).

the second-nearest-neighbor exchange, DMI, and dipolar interactions leads to several
unique cycloidal, checkerboard, row-wise and spin-ice states, unattainable otherwise.
Moreover, coexisting FM and AFM skyrmions are found, as well as novel types of
chiral domain walls and skyrmions (such as the p-AFM ones). With several existing ab
initio predictions that exchange interactions in elemental magnetic monolayers can be
varied depending on the substrate[261–263, 269], the phases mapped out in this chapter
can help the experimental validation of such claims, although influence of a broader
range of interactions can be expected than considered here [282]. Last but not least, the
interactions in the recently realized 2D magnetic materials can also be broadly manipu-
lated by e.g. strain engineering[266] (as we shall see in the chapter 8), where the results
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Figure 7.11 – (A) Example of a frustrated AFM cycloid state obtained in the honeycomb lattice
for J1 � 0, J2 < 0 and D > 0 (corresponding to phase X in Fig. 7.7). Here a supercell
of 204 × 18 spins is considered. (B) Energy of the frustrated AFM cycloid as a
function of the cycloid period λ, for fixed size of the system (L � 204 spin sites, with
periodic boundary conditions), for different DMI strength (J1 � 0, J2 � −300Dddi,
K � 0), revealing the energetically optimal period of the cycloid.

presented in this chapter can provide basic expectations and understanding before the
more detailed calculations (including additional anisotropic exchange couplings such
as Kitaev one[283]) are performed.
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8
Magnonics in two-dimensional magnetic materials

Monolayer chromium-trihalides, the archetypal two-dimensional (2D) magnetic
materials, are established as a promising platform for high-frequency magnonics. In
this chapter, we detail the spin-wave properties of monolayer CrBr3 and CrI3, using
spin-dynamics simulations parametrized from first principles. We reveal that their
spin-wave dispersion can be tuned in a broad range of frequencies by strain, paving the
way towards flexo-magnonic applications. We further show that ever-present halide
vacancies in these monolayers host sufficiently strong Dzyaloshinskii–Moriya interaction
to scatter spin-waves, which can be turned useful in design of spin-wave guides by
defect engineering. Finally we discuss the spectra of spin-waves propagating across a
moiré-periodic modulation of magnetic parameters in a van der Waals heterobilayer,
and show that the several nanometer small moiré periodicities in such samples are
ideal for realization of a magnonic crystal in the terahertz frequency range. Recalling
the additional tunability of magnetic 2D materials by gating, we conclude that these
systems are a front-runner for prospective terahertz magnonic applications.

The results presented in this chapter are published in arXiv:2111.14305 (2021).

8.1 Motivation

Two-dimensional (2D) magnetic materials, such as monolayer chromium tri-
halides and manganese dichalcogenides, have recently drawn immense attention of
both theoretical and experimental research, due to its fundamental significance and
promising technological applications. The high tunability of the magnetic parameters in
such materials, e.g., by lattice straining [34, 284], electric gating [265, 285], layer stack-
ing [286–288], among other techniques, is key for the manipulation of magnetic textures,
such as domain-walls, spin-waves (SWs) and magnetic skyrmions, thus opening a field
of possibilities for new device concepts [289]. Particularly, some chromium trihalides
have been shown able to host terahertz SW modes [290] and are promising candidates

https://arxiv.org/abs/2111.14305
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for ultra-fast information transport and processing based on magnons.

In a chromium trihalide monolayer CrX3 (with X = I, Br or Cl), the plane of Cr
atoms form a honeycomb structure and is sandwiched between two atomic planes of
the halogen atoms, as illustrated in Fig. 8.1. The ferromagnetic super-exchange across
the Cr-X-Cr bonds are anisotropic, and together with the weak single-ion anisotropy
of Cr spins, results in ferromagnetic order with off-plane easy axis [281, 291]. In
addition to the symmetric exchange, the antisymmetric exchange, also known as the
Dzyaloshinskii–Moriya interaction (DMI), can be induced in such systems in the presence
of structural symmetry break of the atomic lattice, e.g., in Janus structures [264] or in
the presence of applied electric fields [292, 293].

In this chapter we investigate the SW propagation in monolayer CrBr3 and
CrI3 as representative of 2D magnetic materials. We take magnetic parameters from
first-principle calculations of the considered structures, as reported in literature [34, 41],
and perform spin-dynamics simulations of the SW propagation. We calculate the SW
dispersion relation in the chromium trihalides on both its pristine form and under
uniform strain, thus showing the tunability of SW properties in the 2D materials,
and reveal the possibility of manipulating the SWs by strain-engineering. We further
analyse the SW propagation in the presence of lattice defects (halide vacancies) in the
chromium trihalides. We show that the lattice defects induce local DMI in the magnetic
monolayer, which can strongly affect the SW dynamics in such materials, and that a
designed pattern of defects can confine the SWs and may serve as a SW guide in the
CrX3 monolayers. Lastly, we investigate the spectra of SWs propagating across periodic
modulation of the magnetic parameters, induced by moiré pattern in van der Waals
heterostructures [294, 295]. We show that such structure can work as a magnonic crytal
[63] for the high-frequency SWs, which exhibit features such as band gaps where SWs
are not allowed to propagate. The wide range of manipulations available in 2D materials
therefore suggests these systems as promising candidates for terahertz magnonics.

8.2 Theoretical modeling

8.2.1 Atomistic spin model

We consider a spin system arranged in a honeycomb structure in order to
simulate the magnetic moments of Cr atoms in the chromium trihalide monolayer. For
that purpose we consider the quadratic Heisenberg spin Hamiltonian, which is given by
[see Sec. 2.3]

H �
1
2

∑
i , j

SiJi jS j +
∑

i

SiAiSi , (8.1)



8.2. THEORETICAL MODELING 166

Figure 8.1 – (a) Top view of the CrX3 lattice. n̂1 and n̂2 represent the main symmetry axis
discussed in Sec. 8.3. (b) Side view of the CrX3 monolayer.

where Ji j andAi are the exchange and single ion anisotropy (SIA) matrices, respectively,
and Si � (Sx

i ,S
y
i ,S

z
i ) is the spin vector at the ith site. We consider S � 3/2 for the Cr3+

ions, with three unpaired valence electrons and quenched orbital moment (L � 0), which
yields a magnetic moment of ∼ 3µB per Cr atom, in agreement with the observed in
such materials[281, 291, 296]. The sum over i in Eq. 8.1 runs over all Cr sites, while the
sums over i , j run over all nearest-neighbor Cr pairs. The exchange matrix can be further
decomposed into a symmetric exchange J and the antisymmetric DMI vector D. The
Hamiltonian then becomes

H �
1
2

∑
i , j

[
JαSαi Sαj + JβSβi Sβj + JγSγi Sγj

+Di j · (Si × S j)
]

+

∑
i

[
Aα′(Sα

′

i )
2
+Aβ′(Sβ

′

i )
2
+Aγ′(Sγ

′

i )
2
]
,

(8.2)

where {αβγ} and {α′β′γ′} are the local bases of eigenvectors that diagonalize J andA,
respectively. Su

i �
u·Si
u·u is the projection of the ith spin along the vector u. For simplicity,

and since in this work we are interested in high frequency SWs, which are dominated
by the short-range exchange interactions, we neglect the contributions of dipole-dipole
interactions. Notice that the above Hamiltonian is not limited to isotropic exchange
interactions, and can be applied to different atomic structures, such as in the presence of
lattice defects, where the bases of eigenvectors can change for specific bonds. For either
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pair Jxx J y y Jzz Jx y Jxz J yz ∆ Azz

(i- j) (meV) (meV) (meV) (meV) (meV) (meV) (meV) (meV)
CrI3 -0.22 -0.07

(1-2) -5.10 -3.72 -4.63 0.00 0.00 0.84
(2-3) -4.07 -4.76 -4.63 -0.60 0.72 -0.42
(2-5) -4.07 -4.76 -4.63 0.60 -0.72 -0.42
〈J〉 -4.41 -4.41 -4.63 0.00 0.00 0.00

CrBr3 -0.04 -0.01
(1-2) -3.45 -3.29 -3.42 0.00 0.00 0.10
(2-3) -3.33 -3.41 -3.42 -0.07 0.08 -0.05
(2-5) -3.33 -3.41 -3.42 0.07 -0.08 -0.05
〈J〉 -3.37 -3.37 -3.42 0.00 0.00 0.00

Table 3 –Magnetic parameters for pristine CrI3 and CrBr3 obtained from first-principle calcu-
lations [see Ref. bacaksiz2021distinctive for details]. Jxx , J y y , and Jzz are diagonal
elements, and Jx y � J yx , Jxz � Jzx , J yz � Jz y the off-diagonal elements of the ex-
change matrix. 〈J〉 is the average exchange over the three nearest-neighbour pairs and
∆ � 〈Jxx〉 − 〈Jzz〉 is the out-of-plane anisotropy.Azz is SIA parameter, same for each
Cr site. Pairs (i-j) are indicated in Fig. 8.1 (a).

considered structure, corresponding exchange and SIA matrices for different Cr pairs
are obtained from first principles calculations. Table 9 lists the magnetic parameters
obtained for pristine CrI3 and CrBr3 monolayers [34]. Parameters obtained for other
specific cases considered in this chapter will be shown where needed.

The dynamics of the magnetic spins is governed by the Landau-Lifshitz-Gilbert
(LLG) equation [Eq. 2.15]. In this chapter, the LLG spin dynamics simulations are
primarily based on the simulation package Spirit [38], adapted to accommodate our
Hamiltonian [Eq. 8.2].

8.3 Spin-wave propagation in pristine and strained CrX3

The magnetic interactions in 2D materials are very sensitive to deformation in
the atomic lattice. In particular, it has been shown that exchange interactions in CrI3 and
CrBr3 are significantly affected by either tensile or compressive strain [34]. Therefore, in
this section, we investigate how straining the 2D material can affect the propagation of
SWs in such systems. For the simulations, we consider both CrBr3 and CrI3 monolayers
on their pristine form as well as under uniform biaxial strain. The SW beams are
artificially created by a sinusoidal in-plane oscillating field Binput � b0 sin(2π fint)k̂
applied in a narrow rectangular region, where fin is the input frequency; b0 the field
amplitude and k̂ is the SW propagation direction. For the simulations we consider
b0 � 0.1 T and damping parameter α � 0.001. The SW frequency f and wavelength λ are
calculated by fitting a sine function to the magnetization oscillations [see e.g. Fig.8.2 (a)]
as a function of time and space respectively. Fig. 8.2 (b,c) shows the dispersion relation,
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Figure 8.2 – (a) Spin components as a function of time for the case of 1 THz SW. The Sy spin
component is shifted for better visualization. (b,c) Spin-wave dispersion relation
obtained in the simulations for CrBr3 (b) and CrI3 (c), under different strain. Solid
lines show the numerical fit to the quadratic expression f (k) � Ak2 + f0. (d) The
values of the fitted parameters A and f0 obtained as a function of strain. Solid and
dashed lines are the analytical expressions (obtained from Eq. (8.4)) for f0 and A,
respectively.

i.e., the relation between the SW frequency and the wavenumber k � 2π/λ for CrBr3

and CrI3, respectively, obtained in the simulations under different strain. The calculated
dispersion curves correspond to the lower-energy magnon modes. Notice that the SW
dispersion can be tuned throughout a wide range of frequencies by performing strain
on the honeycomb structure, which demonstrates the ease of tuning magnonics in
such 2D materials. Solid lines in Fig. 8.2 (b,c) depict the fit of the quadratic expression
f (k) � Ak2 + f0 to the numerical data. The values of the fitting parameters A and f0
as a function of strain are shown in Fig. 8.2 (d). One can clearly notice the distinct
response of the parameter f0, which corresponds to the zero-momentum SW mode,
to strain in CrBr3 and CrI3. As discussed below, this behaviour is directly related to
the out-of-plane exchange anisotropy, whose magnitude for CrI3 increases for either
tensile or compressive strain, while for CrBr3 it has linear dependence on strain [see,
e.g, Fig 8.3]. The corresponding energy gaps at k � 0, given by ∆E � h f0, where h is
the Plank constant, varies in the range of 1.25 to 1.74 meV for CrI3 and from 0.18 to
0.36 meV for CrBr3, under the −5 to 5 % range of strain. Those values have the same
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Figure 8.3 –Magnetic parameters for CrBr3 and CrI3 as a function of strain, for (a) Average
exchange (b) Out-of-plane exchange anisotropy, and (c) Single-ion-anisotropy.

order of magnitude, but are significantly smaller than that measured for the case of
few layer CrI3 in Ref. [290] (9.4 meV) and Ref. [297] (3 meV). We expect that such
strain dependency of spin excitations in the 2D magnets can be further investigated
experimentally by means of different spectroscopy techniques [57, 61, 290, 297, 298].

The SWdispersion can be obtained analytically in the limit of small SW amplitude
by solving the linearized LLG equation [32]. For that purpose, let us simplify the
Hamiltonian [Eq. (8.2)] as follows. First notice that, due to the symmetry of the lattice,
the DMI contribution is null, and the only finite term of SIA matrix is Azz , such that
the SIA contribution to the energy of the ith spin becomes Azz(Sz

i )
2. Assuming that

both CrBr3 and CrI3 have strong out-of-plane anisotropy, the exchange energy might
be rewritten in terms of an isotropic exchange J0 � 〈Jxx〉, and the anisotropic term
∆ � 〈Jzz〉 − 〈Jxx〉, where 〈...〉 represents the average over the three nearest-neighbour
pairs. The lattice symmetry guarantees that 〈J y y〉 � 〈Jxx〉 � J0 and 〈Jab〉 � 0 for a , b
[see, e.g., Table 9]. The Hamiltonian for the ith spin takes the simple form of the XXZ
model [291, 299, 300]

Hi � J0
∑

j

Si · S j + ∆
∑

j

Sz
i Sz

j +A
zz(Sz

i )
2, (8.3)

where the sum in j runs over the three nearest-neighbours of the ith spin. The SW
dispersion is then calculated by assuming the linearized solution Ŝz ≈ 1, Ŝx ≈ A0e i(k·r−ωt)

and Ŝy ≈ iA0e i(k·r−ωt), where A0 � 1 represents the SW amplitude; ω is the SW angular
frequency and r is the position of the considered spin. Substituting that into the LLG
equation [Eq. (2.15)], with the effective field derived from Eq. (8.3), we obtain [see
Appendix B.1]

ω(k) �
γS2

(1 + α2)µ
[
3∆ + 2Azz

+ J0 g(k)
]
, (8.4)

where,
g(k) �3 − cos(ka) − 2 cos(ka/2), if k ‖ n̂1,

g(k) �2 − 2 cos(ka
√

3/2), if k ‖ n̂2,
(8.5)
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where a is the distance between nearest-neighbour pairs, and n̂1 and n̂2 are the main
symmetry axis of the honeycomb lattice, as shown in Fig. 8.1.

Notice that, in the limit of small ka, Eq. (8.5) can be approximated as g(k) ≈ 3a2

4 k2

for both k ‖ n̂1 and k ‖ n̂2. The SW frequency f � ω/2π then assumes quadratic
dependence on the wavenumber k. The solid and dashed lines in Fig. 8.2 (d) show
the analytical solutions (with α2 � 1) for the zero-momentum SW frequency f0 �

γS2

2πµ (3∆ + 2Azz) and the quadratic coefficient A �
γS2

2πµ
3a2 J0

4 , respectively, which are in
good agreement with the numbers obtained in the simulations. The values of ∆,Azz

and J0 as a function of strain are shown in Fig. 8.3. Notice that the XXZ model [Eq. (8.3)]
is shown to be a good approximation to describe SWs in uniform CrI3 and CrBr3 2D
magnets.

In the case where the CrX3 lattice experiences non-zero DMI, such as in Janus
structures [264] or in the presence of out-of-plane applied electric fields [292, 293], the
linearized solution for the SW dispersion [Eq. (8.4)] results in an extra term that has
linear dependence on the wavevector k. [301] The strongest effect of DMI to the SW
dispersion is observed when the background magnetization lies in the same plane of
the DMI vectors. Detail on the calculation of SW dispersion with uniform DMI included
can be found in Appendix B.1.

8.4 Flexo-magnonics

The strong response of SW properties to strain in the 2D material suggests
the possibility of flexo-magnonic applications. In fact, 2D materials are flexible and
strain engineering can be realized in numerous ways. For example, localized strain can
be induced by growing the 2D material on top of a patterned substrate [302, 303] or
by placing it onto a prestrained elastometric substrate, whose compression produces
buckling-induced delamination of the 2D material, such as wrinkles and buckles [303–
305]. In addition, bubbles and tents can be formed in the 2D material by trapping
water, gas or solid nanoparticles at the interface between the magnetic layer and the
substrate [306, 307].

To study the interaction of SWs with localized strain we simulate the SW
propagation in the presence of a wrinkle in the CrI3 monolayer. Fig. 8.4 (a) illustrates
the considered system. In such a configuration, the position of a generic Cr atom in the
curved structure can be parametrized as r′ � r + u(r), where r � (x , y , 0) is the atom
position in the pristine lattice and u(r) � (ux(r), uy(r), h(r)) the position displacement.
Here, ux and uy represent the in-plane displacement and h(r) is a scalar field accounting
for out-of-plane deformations. The red and blue shades in Fig. 8.4 (a) illustrate the
expected regions of tensile and compressive strain respectively [308]. In addition to
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Figure 8.4 – (a) Schematic of wrinkled 2Dmagnetic material. The curvature induces nonuniform
strain in the 2D material and the magnetic anisotropy points normal to the film
surface. Here, the red shade stands for tensile strain and the blue shade represents
the region of compressive strain. (b) Illustration of the DMI pattern expected in the
case of nonuniform strain in the CrX3 monolayer. (c) Snapshot of simulatedmagnetic
ground state in the presence of a wrinkle in the 2D material. The dashed lines
indicate the regions of maximum slope in the 2D material. (d-e) Snapshots of SW
simulation propagating (d) across and (e) along a wrinkle in CrI3, with f � 0.5 THz.
(f) Snapshot of the SW simulation corresponding to (e) for the case of pristine film.

the local strain, the curvature also induces a rotation in the direction of the magnetic
anisotropy, which points normal to the surface of the magnetic film [Fig. 8.4 (a)].
Moreover, due to the non-uniform deformation, a symmetry break also emerges giving
rise to localized DMI. Figure 8.4(b) illustrates the expected DMI vectors in the case
of a non-uniform uniaxial strain in the wrinkled CrX3 monolayer. DFT calculations
performed for a flat system show that the DMI increases linearly with uniaxial strain,
with relatively small magnitude of up to D � 0.08 meV for 6% of local strain [41].

First principles calculations of such curved material are rather complicate and a
relaxation of the atomic structure is required before calculating the magnetic parameters.
However, as a first step in understanding the interaction of SWs in such systems, here
we model the material curvature by rotating the local bases of eigenvectors of the
magnetic Hamiltonian [Eq. (8.2)] accordingly to the surface normal, and the magnitude
of interactions are modeled by including a strain profile. Observe that the considered
magnetic Hamiltonian is completely determined by the exchange and anisotropy
matrices and the angle between neighbouring spins, therefore, local deformations can be
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Figure 8.5 – (a) Illustration of CrX3 lattice in the presence of a single halide vacancy. Induced
DMI vectors are illustrated as red arrows. (b-d) Snapshots of SW simulations in the
presence of randomly distributed defects in CrI3, for defect densities η � 0, η � 0.01,
η � 0.02 vacancies per Cr atom, respectively. The input SW frequency is 0.5 THz.
(e-g) Correspondent output SW amplitudes for the cases in (b-d), respectively,
measured at a distance of 100 nm from the SW source. Colors in (e-g) correspond to
different time steps along the 2 ps SW period.

modeled by modifying the interaction matrices instead of the precise atomic positions.
Fig. 8.4 (c) shows the magnetic ground state obtained in the simulations for a single

wrinkle of Gaussian shape h(r) � h0e−
x2
w2 , where h0 � 20 nm and w � 15 nm define the

height and width of the wrinkle, respectively. The considered strain profile has maximal
deformation of ε � 5% on top of the wrinkle and satisfies ε(x) ∝ ∂2h(r)/∂x2. Notice that
the curvature induces a canting in the ground state magnetization. Fig. 8.4 (d-f) shows
snapshots of the simulation of a 0.5 THz SW propagating (d) across and (e) along the
wrinkle, where the SW can either be reflected by or confined along the flexed region,
in comparison with the case of a pristine film (f). In this way, and recalling the wide
range of possibilities for manipulating the 2D material, this suggests these systems as
candidates for flexo-magnonic applications.

Furthermore, although we have considered an uniform damping parameter (α)
in our calculations, the value of αmay also be affected by local strain in the vicinity of the
wrinkle [309]. Further studies are needed to understand the effect of the strain-induced
α nonuniformity on the SW propagation.

8.5 Interaction of spin-waves with lattice defects

8.5.1 Randomly distributed defects

Vacancies are the most commonly observed defect in nanomaterials. They not
only naturally appear when the material is synthesized under harsh conditions, but
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can also be artificially induced by vacancy engineering [310, 311]. In this section we
investigate the interaction of SWs with randomly distributed defects (halides vacancies)
in CrX3 lattice. The symmetry break around the lattice defect results in DMI interaction
between the neighboring Cr atoms, as illustrated in Fig.8.5 (a). It is well known that SWs
are strongly affected by the DMI interaction and can even be reflected by an interface
where DMI changes[312, 313]. In the case of lattice defects, ab initio calculations show
DMI vectors of magnitudes up to D � 5.57 meV for CrI3 and D � 2.57 meV for CrBr3

in the vicinity of halide vacancies [41]. Such strong variations of the local magnetic
interactions can therefore scatter the SW propagation in the 2D magnetic materials.

In this sectionwe quantify the SWscatter inCrBr3 andCrI3 under different density

Isolated defect
pair Dx D y Dz |D |
(i- j) (meV) (meV) (meV) (meV)

CrI3
(1-2) 0.29 -0.20 -0.53 0.64
(2-3) 4.05 -2.33 -0.39 4.69
(2-5) 0.17 0.09 -0.46 0.50
(3-4) 0.01 0.11 -0.06 0.12
(3-6) 0.01 -0.38 0.19 0.42

CrBr3
(1-2) -0.05 -0.13 0.26 0.29
(2-3) 2.24 -1.31 -0.08 2.60
(2-5) 0.00 0.06 -0.04 0.07
(3-4) 0.02 0.03 0.07 0.08
(3-6) -0.09 -0.14 0.07 0.18

Line of defects
pair Dx D y Dz |D |
(i- j) (meV) (meV) (meV) (meV)

CrI3
(1-2) 0.01 -0.43 0.06 0.44
(2-3) -0.05 -0.55 2.42 2.48
(2-5) 3.61 -0.27 4.23 5.57
(3-4) -0.09 0.03 -0.23 0.25
(3-6) 3.61 -0.27 4.23 5.57

CrBr3
(1-2) 0.00 -0.09 0.01 0.09
(2-3) 0.12 0.14 0.47 0.50
(2-5) 2.09 -0.02 1.50 2.57
(3-4) -0.04 -0.03 0.01 0.05
(3-6) 2.09 -0.02 1.50 2.57

Table 4 – Induced DMI parameters at an isolated defect (halide vacancy) and at a line of such
defects in CrI3 and CrBr3, obtained from first-principle calculations [41]. Pairs (i-j) are
indicated in Fig. 8.5 (a) and Fig. 8.7 (a).
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Figure 8.6 – (a) SWnormalized transmission as a function of the density of defects, η, measured at
a distance of y � 100 nm from the SW source, with f � 0.5 THz. (b) SW transmission
as a function of the output distance, with η � 0.01 and f � 0.5 THz. Here, the
transmission amplitudes are normalized with respect to the case of η � 0, measured
at the same distance from the SW source.

of defects η, which we define as the number of vacancies per Cr atom. Fig.8.5 (b-d) shows
the snapshots of SW simulations when propagating through the CrI3 monolayer for
η � 0, 0.01 and 0.02, respectively. The corresponding output SW amplitudes, measured
at a distance of 100 nm from the SW source [Fig.8.5 (e-g)], reveal that the transmitted
wave is strongly affected in the case of high density of defects. In order to quantify
the SW transmission under the different defect densities, we integrate the output SW
amplitudes along the direction perpendicular to the SW propagation and normalize it
with respect to the case without defects, i.e., η � 0. Fig.8.6 (a) shows the normalized
transmission for the 0.5 THz SWs in CrBr3 and CrI3. Notice that SWs in CrI3 are strongly
affected by the halide vacancies when compared to CrBr3. We relate this property to the
large DMI interactions induced in CrI3, which are more than twice as large as in the
CrBr3 sample.

The defect-induced scattering as a function of distance may be important when
designing new magnonic devices. Fig.8.6 (b) shows the SW transmission as a function of
the output distance, normalized with respect to the case of η � 0, measured at the same
distance from the SW source. Notice that the normalized transmission decreases linearly
as a function of the output distance, where the transmission in CrI3 decreases in a rate of
approximately twice as fast as that of CrBr3, for η � 0.01, thus emphasizing the stronger
response of SWs to defects in CrI3. Lastly, we did not observe any significant frequency
dependence (for the range of 0.3–1.5 THz) in the results presented in this section.

8.5.2 Line of defects

In this section we investigate the interaction of SWs with a row of consecutive
defects (halides vacancies) in CrX3 lattices as a possible way of controlling the SW
propagation direction in such systems. As demonstrated in the previous section, the
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Figure 8.7 – (a) Illustration of CrX3 lattice in the presence of defect line (halides vacancies).
Induced DMI vectors are illustrated as red arrows. (b) Reflection of SW by defect
line. Snapshot of spin-wave simulation for a 0.5 THz SW reaching the defect line in
an incident angle of φ � π/4 in CrI3. Arrows indicate the SW propagation direction.
(c-d) Transmission and reflection coefficients as a function of incident angle φ for
CrBr3 (c) and CrI3 (d), obtained for SW frequency f � 0.5 THz and α � 0.001. (e)
Frequency dependency of the transmission coefficient T for both CrBr3 and CrI3 at
fixed incident angle φ � π/6. (f) Snapshot of the simulations for the SW confinement
between two defect lines in the magnetic material.

induced fluctuations inmagnetic parameters around the lattice defects strongly affect the
SW propagation. Therefore, a designed pattern of defects, such as a row of consecutive
defects, may be able to confine the SWs and serve as a waveguide. Magnetic parameters
of the considered structure, which is illustrate in Fig.8.7 (a), are given in table 4 and
in the Appendix B.2, where the magnitudes of the DMI are similar to that obtained in
the vicinity of isolated defects. Fig. 8.7 (b) shows a snapshot of the simulation for a SW
propagating across the defect line in CrI3, where we consider a 0.5 THz SW reaching the
defect line with an incident angle of φ � π/4. Notice that only a fraction of the SW is
able to cross the defect line while the other part is reflected. In Fig. 8.7 (c-d) we show the
transmission coefficients, defined as [314, 315]

T �

(
∆T

∆0

)2
, R �

(
∆R

∆0

)2
, (8.6)
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where ∆T and ∆R are the amplitudes of the transmitted and reflected waves, respectively,
and ∆0 is the corresponding SW amplitude in the absence of defects, calculated at the
same distance from the SW source. The reflection and transmission coefficients are
defined to satisfy the relation R � 1 − T. In Fig. 8.7 (c-d) the transmission and reflection
coefficients are shown as a function of incident angle φ for CrBr3 [Fig. 8.7 (c)] and CrI3
[Fig. 8.7 (d)]. Notice that, SWs experience large reflection by the defect line for the case
of CrI3 while most part of the SW is transmitted across defect line in CrBr3. We relate
this property to the large DMI interactions induced in CrI3. Similar to an interface
where DMI changes [312], the reflected part of the SW increases as we increase the
incident angle from φ � 0 to φ � π/2. However, total reflection is not obtained in our
simulations, which may be a consequence of the potential barrier induced by defects
being composed of a single atomic line rather than an interface. Fig. 8.7 (e) shows the
frequency dependency of the transmission coefficient T for both CrBr3 and CrI3 at fixed
incident angle φ � π/6, which shows a slight increase on transmission by increasing
SW frequency.

Note that such precise pattern of defects can be difficult to reproduce experimen-
tally by vacancy engineering the 2D material [310, 311]. However, a defected region
could be induced, e.g., by electron-beam lithography [310] or by scratching the material
with a tip. The induced defects would not be in a perfect line, but randomly placed
along the scratch. In Fig. 8.7 (f) we show the snapshot of the simulation for the SW
propagating across a distribution of defects in CrI3, randomly placed along narrow
regions of six lattice constants width, in order to simulate scratches in the magnetic
material. Notice that such a pattern of defects can also confine the SWs. Moreover,
the necessary ingredient for confining the SWs in such systems is the variation of
the magnetic parameters locally, which can also be induced, for example, by electric
gating [292] or strain-engineering the 2D material, as demonstrated in Sec. 8.4.

8.6 Magnonic crystals

The spectra of SWs can be significantly affected by the magnetic media in
which the wave propagates. Magnonic crystals are artificial materials designed in
such a way that the magnetic properties of the media are characterized by periodic
lateral variation[63]. The SW spectra in such materials exhibit features such as band
gaps, where the waves are not allowed to propagate. Magnonic crystals have potential
application in magnonics, such as information transport and processing based on
magnons. Periodic variations of the magnetic parameters in the 2D magnetic materials
can be induced in multiple ways, for example, by periodic electric gating [316], strain
engineering [303, 305, 307], or by growing the 2D material on top of a patterned
substrate [302]. However, a magnonic crystal for THz frequencies requires a modulation
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Figure 8.8 – Example of moiré-like magnonic crystal. (a-b) Illustration of CrBr3/MoSe2 het-
erostructure, from side (a) and top (b) views. (c) moiré pattern created between Br
and Se layers. (d) Correspondent DMI profile calculated from the moiré pattern
in (c) [see text]. Here, δ1 and δ2 are the two main periodicities of the system. (e)
Simulated SW transmission spectra after crossing the moiré-like magnonic crystal,
in comparison with the reference waveguide (pristine film), where we consider
the incident SW propagating parallel to the δ1 direction. Black arrows indicate the
critical frequencies where the SW suffer destructive interference. Here we consider
D0 � 3 exp(d/r0)meV and r0 � 0.2 Å, such that the maximum magnitude of DMI is
3 meV.

period of few nanometers [61] [see, e.g., SW dispersion relation in Fig. 8.2], which may
be difficult to achieve with the methods mentioned above. Here we propose a moiré
pattern as the source of periodic modulation in magnetic parameters for the design
of magnonic crystals in the high-frequency regime. It is known that a moiré pattern
can induce periodic variation in the magnetic parameters of the 2D material [294, 295].
Therefore, let us now consider the case where the CrX3 monolayer is stacked with
a non-magnetic material in order to produce a moiré pattern. For instance, consider
the van der Waals heterostructure CrBr3/MoSe2 as illustrated in Fig. 8.8 (a-b). The
superexchange interaction between Cr atoms, mediated by the Cr-Br-Cr bonds, will be
affected by the Br-Se interaction, which in turn depends on the local stacking throughout
the moiré pattern. The periodicity of the moiré structure is then reflected in a periodic
modulation inmagnetic parameters. Fig. 8.8 (c) shows themoiré pattern created between
the Br layer (which form a hexagonal lattice, with lattice constant aBr � 3.698 Å, different
from the lattice constant of CrBr3 suppercell) and the Se layer (which form a hexagonal
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lattice, with lattice constant aSe � 3.289 Å) [317]. The symmetry axes of both hexagonal
lattices are considered to be aligned, which corresponds to an angle of 30◦ between
CrBr3 and MoSe2 suppercells [318]. The mismatch in the lattice constants creates the
moiré pattern.

The interaction between the layers can be modeled as a function of the distance
between Br and Se atoms [295]. Since there is a lack of inversion symmetry in the
heterostructure, and the transition metal dichalcogenide (TMD) monolayer MoSe2

hold strong spin-orbit coupling [319, 320], one can expect a periodic modulation in
the DMI parameter throughout the magnetic layer. As a first step in understanding
the magnonics in such a complex system, and since the DMI strongly interact with
SWs, here we consider a periodic modulation only in the DMI parameter, and assume
the other magnetic parameters to be unchanged. Fig. 8.8 (d) shows the DMI profile
extracted from themoiré pattern, according to the expression D � D0 exp(−

√
r2 + d2/r0),

where r is the lateral distance between Br and Se atoms, d � 3.5 Å is the separation
between the layers [318] [see Fig. 8.8 (a)] and D0 and r0 are constants that define the
DMI magnitude. Here we consider D0 � 3 exp(d/r0) meV and r0 � 0.2 Å, such that
the maximummagnitude of DMI is 3 meV. The small value of r0 represents the short
range interaction between neigbouring orbitals, such that the maximal interaction is
given when Se atoms are on top of Br ones. Notice that, a SW propagating in such a
system will experience different periodic modulations, depending on the propagation
direction. The two main periodicities in the system are δ1 ≈ 5.13 nm and δ2 ≈ 2.96 nm,
as indicated in Fig. 8.8 (d). Such short periodicities found in the moiré heterostructures
are, therefore, capable of interacting with high frequency SWs and can be adjusted, for
example, by changing the rotation angle between the layers or replacing the TMD layer
with another material with a different lattice constant and/or different lattice structure.

Fig. 8.8 (e) shows the simulated SW transmission spectra after crossing the
moiré-like magnonic crystal, in comparison with the reference waveguide (pristine film),
where we consider the incident SW propagating parallel to the δ1 direction. Notice that
the transmission spectrum of the moiré system significantly differs from the pristine
medium, and three valleys of prohibited frequencies are visible. Such spectrum is typical
of magnonic crystals[63]. Fig. 8.9 (a-b) shows the snapshots of SW simulation for the 0.5
and 0.65 THz SWs propagating across the DMI pattern, where in the second case the
SW suffer destructive interference and do not propagate.

Lastly, the hexagonal symmetry in the modulation of magnetic parameter results
in anisotropic dispersion of the SW. Fig. 8.9 (c) shows the snapshots of SW simulation for
the 0.4 THz SW propagating across the moiré pattern. The SW is created at the center of
the sample and it propagates along the radial direction. Notice that the SW is filtered
along the δ1 directions, as expected from the transmission spectra in Fig. 8.8 (e), but it
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Figure 8.9 – (a-b) Snapshots of SW simulation for the 0.5 and 0.65 THz SWs propagating across
the moiré pattern. The incident SW propagates parallel to the δ1 direction. (c)
Snapshots of SW simulation for the 0.4 THz SW propagating across the moiré
pattern in the radial direction. The SW is filtered along the δ1 directions, but can
propagate along δ2.

can propagate along δ2 direction, thus demonstrating the anisotropic SW dispersion
characteristic of such systems.

8.7 Conclusions of the chapter

In summary, we presented the SW properties in monolayer chromium trihalides
CrBr3 and CrI3, under different possibilities for tuning magnonics in such 2D materials.
We reveal that the SW dispersion relation can be tuned in a large range of frequencies by
straining the 2D magnet, and that the SW dispersion has different response to strain in
CrBr3 when compared to CrI3, which is directly related to their out-of-plane anisotropy.
We reveal the possibility of controlling the SW propagation by strain-engineering the 2D
material, paving the way towards flexo-magnonic applications. Next, we investigate the
SW propagation in the presence of structural defects (halide vacancies) in the chromium
trihalides. Our calculations show that the lattice defects induce large enough DMI to
strongly affect the SWdynamics in themagnetic monolayers, with larger effects observed
for the case of CrI3. We show that a designed pattern of defects is able to confine SWs
and may serve for SW-guides. Lastly, we show the spectra of SWs propagating across
periodic modulation of the magnetic parameters, induced by moiré pattern in a van
der Waals heterostructure, that indicate such structures hold the necessary nanometric
modulation period to work as a magnonic crystal for the terahertz SWs. The wide range
of possibilities for manipulating SWs in 2D materials therefore suggests these systems
as a front-runner for terahertz magnonics.
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9
Conclusions

The precise control of skyrmionics and magnonics in magnetic materials is key to
the development of novel spin-based information technology applications. In this thesis,
we revealed multiple alternatives for the manipulation of skyrmions and spin-waves
in different materials, such as bulk chiral magnets, heterochiral structures, magnet-
supperconductor hybrids and two-dimentional magnetic materials. We have made use
of a multi-scale model, as described in Chapter 3, to numerically simulate the magnetic
states at each considered material, from micromagnetic to atomistic control, together
with minimum energy path analysis of magnetic transitions involving skyrmions. The
spin dynamics simulations were performed with the help of the simulation packages
Mumax3 [129] and Spirit [38], in some cases modified by us to accommodate themagnetic
structures considered in our work.

The results of our work were presented in Chapters 4 to 8. First, in Chapter 4 we
have studied the dynamics of skyrmion nucleation from the conical phase in helical
magnets and showed how the skyrmion lattice is formed progressively in small domains.
The preferential nucleation mechanisms of magnetic skyrmions is reveled, under
minimal energy path analysis, to follow a rod-like (one-dimensional) nucleation of chiral
bobbers from the film surface, in agreement with experimental observations reported in
literature, and with an activation barrier of several eV per skyrmion for the case of MnSi.
Furthermore, we demonstrated the interesting blinking (creation-annihilation) behavior
of skyrmions close to the phase boundary between the conical and SkL phases.

Next, in Chapter 5 we demonstrated the manipulation of magnetic skyrmions in
heterochiral magnets, for both the ferromagnetic (FM) and antiferromagnetic (AFM)
cases. We demonstrated that a local canting of the magnetization, characteristic for the
heterochiral interface, can strongly deflect the trajectory of FM skyrmions, which is very
useful for the controlled manipulation of skyrmion chains in skyrmion-based devices,
such as switches, logic gates and memory elements. In addition, we revealed that such
deflection is completely absent in the AFM case, and that the AFM skyrmion achieves
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much higher velocities and stronger confinement in nanoengineered heterochiral tracks
when compared to its FM counterpart, thus reinforcing AFM skyrmions as a favorable
choice for skyrmion-based devices.

In Chapter 6, we showed the coupling of magnetic skyrmions with suppercon-
ducting vortices in hybrid magnet-superconductor materials, which were revealed as
promising platform for skyrmion manipulation. We demonstrated the nucleation of the
skyrmion-vortex pairs (SVPs) in the hybrid sample, based on experimental observations,
and studied in details the manipulation of a single SVP in case of current applied to
either magnetic or superconducting parts, where we combined micromagnetic and
molecular dynamics simulations to investigate the behavior of skyrmions and vortices
simultaneously. The skyrmion Hall-angle with respect to current applied into the
magnetic film is shown to be always greater than the one observed in the absence of
vortices, and the possibility of compensating the skyrmion Hall effect in such systems
is shown by applying combined currents into both constituents of the heterostructure.
The precise control of the SVP in such topological hybrid materials, as demonstrated in
Chapter 6, holds promise to reveal rich fundamental phenomena and applicable effects
in skyrmionics.

InChapter 7we discussed the effects of suppressing nearest-neighbour exchange
in magnetic monolayers. Recalling the high tunability of magnetic parameters in two-
dimentional magnets (by strain-engineering, gating, heterostructuring, etc.), we reported
the rich phase diagram of exotic magnetic configurations obtained for both square and
honeycomb lattice symmetries in the case of suppressed nearest-neighbour exchange
interaction in the magnetic monolayers. We showed that several unique cycloidal,
checkerboard, row-wise and spin-ice states are stabilized by the competition between
the second-nearest-neighbor exchange, DMI, and dipolar interactions. In addition, the
coexistence of FMandAFMskyrmions and cycloids are found (resulting fromdegenerate
FM and AFM states promoted by the absence of the nearest-neighbor exchange), as
well as novel types of skyrmions and chiral domain walls, such as the p-AFM ones. The
magnetic monolayers are also shown to be good candidates to host the AFM skyrmions,
experimentally evasive to date. The results presented in this chapter expanded the scope
of magnetic phases achievable in suchmonolayer materials, crucial for both fundamental
and technological advances.

Lastly, in Chapter 8 we presented the spin-wave (SW) properties in two-
dimensional (2D) chromium-trihalides CrI3 and CrBr3, which are established in the
literature as a promising platform for high-frequency magnonics. We revealed that the
SW dispersions in such 2D materials are highly sensitive to strain-engineering, and can
be tuned in a broad range of frequencies, thus paving the way towards flexo-magnonic
applications. We demonstrated the possibility of controlling the SW propagation by
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both strain- and defect-engineering the 2D material, where structural defects (halide
vacancies) induce large enough DMI to strongly affect the SW dynamics in the magnetic
monolayers. Finally, we showed the spectra of SWs propagating across a moiré-periodic
modulation of magnetic parameters in a van der Waals heterobilayer, where the nano-
metric periodicities found in such samples are ideal for the realization of a magnonic
crystal in the terahertz frequency range. In this way, the results presented in this
chapter reinforce these systems as front-runners for prospective terahertz magnonic
applications.
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A
Supporting information for Part II-Skyrmionics in thin

film heterostructures

A.1 Micromagnetic model and the antiferromagnetic state

The mumax3 software was originally developed for simulations of ferromagnetic
(FM) systems in the continuous field approximation. However, in micromagnetic
simulations we do not work with a continuous field. Instead we discretize the field on a
grid. Therefore, for the case of an antiferromagnetic (AFM) system, which comprises
two sublattices of reversely-aligned spins, each cell of the mesh grid is now understood
as one single spin, and we end up performing an atomistic simulation, with the grid
separation now representing the lattice parameter.

The exchange energy density Eex � A
[
(∂xm)2 + (∂ym)2

]
is the continuous

analogue form of the classical Heisenberg Hamiltonian Ei j � −JSi ·S j , which models the
exchange interaction between neighbouring spins Si and S j in atomistic spin systems.
This analogy can be observed by considering, e.g., the first-order finite-difference
approximation of the energy density due to variations of the magnetization along the x
direction, i.e.,

A
(
mi+1 −mi

∆x

)2

�
2A
(∆x)2 (1 −m

i ·mi+1), (A.1)

wheremi andmi+1 are the magnetizations of adjacent grid cells, with grid separation
∆x along the x direction. Notice that the energy changes with the dot product of the
magnetization in neighbouring cells, which is mathematically equivalent to the classical
Heissenberg Hamiltonian. Similar to the exchange interaction, the Dzyaloshinskii-
Moriya interaction (DMI) Edmi � −D

[
mx∂xmz − mz∂xmx + my∂y mz − mz∂y my

]
is the

continuous analogue of the classical Heisenberg-like Hamiltonian Ei j � D · (Si × S j),
which models the DMI between neighbouring spins Si and S j with DMI vector D.
Again, considering only variations of the magnetization along the x direction, the
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Figure A.1 – Comparison of the results obtained in Fig. 5.8 and Fig. 5.9 of chapter 4 with those
obtained for the ultra-small grid separation of a � 2.5Å. (a) Critical current for
the skyrmion to overcome a heterochiral interface in the AFM and FM cases, as a
function of ∆D, with D1 � 0.8Dc fixed. (b) Center-of-mass velocities of the AFM
skyrmion during motion shown in Fig. 8 (a) of the main text.

finite-difference approximation yields

−D
[
m i

x
m i+1

z − m i
z

∆x
− m i

z
m i+1

x − m i
x

∆x

]
�

D
∆x

êy · (mi ×mi+1), (A.2)

with mi and mi+1 the magnetizations of adjacent grid cells. This expression is also
equivalent to the classical Heissenberg Hamiltonian for the DMI.

Therefore, to perform the atomistic simulation one needs to consider an ultra-
small mesh grid with grid separation of the order of the atomic distances. In order to
check our results, we reproduced Fig. 5.8 and 5.9 of chapter 4 for the antiferromagnetic
system, now with a grid separation of a � 2.5Å, which is a typical value for the lattice
constant considered in atomistic simulations[127, 206]. Fig. A.1 compares the results
of Figs. 5.8 and 5.9 of chapter 4 with those obtained for the ultra-small grid separation
of a � 2.5Å. Notice that the results do not change considerably by changing the grid
separation, which indicates that the AFM simulations presented in the main text can be
understood as atomistic simulations on a square lattice.

A.2 Calculation of the dissipative tensor

The dissipative tensor can be calculated by considering a single magnetic
skyrmion with its center located at the origin r � 0. The components of the dissi-
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pative tensor are defined as

Di j �
dMs
γ

∫
d2r∂im · ∂jm. (A.3)

The azimuthal symmetry of the spin configuration leads to Dxx � Dy y � D and
Dx y � Dyx � 0, and reduces the problem to a 1D integral

D �
dMs
γ
π

∫ ∞

0
rdr

[(
dθ(r)

dr

)2
+

sin2 θ(r)
r2

]
, (A.4)

where we usedm(r) � sin[θ(r)]r̂+cos[θ(r)]ẑ in Eq. (A.3) for the case of a Néel skyrmion.
Here r �

√
x2 + y2 is the distance from the skyrmion core. Eq. (A.4) can be discretized

in the simulation as follows

D �
dMs
γ
π

N∑
i�1

i

[(
θ(i + 1) − θ(i − 1)

2

)2
+

sin2 θ(i)
i2

]
, (A.5)

where r � ia, with a the lattice separation. N is such that ξsk � Na, with ξsk the
skyrmion radius.

For the range of parameters considered in chapter 4 we calculate D/( dMs
γ ) ≈

4π–8π.

For the results presented in Sec. 6.8.4 of chapter 5 we have calculated D ≈
2 × 10−16 N/ms−1, for the skyrmion at rest in the absence of applied fields, with
D � 0.8Dc and the remaining FM parameters as given in Sec. 6.8.1.

Figure A.2 – The skyrmion is initialized on the left side of the diagram. Depending on the
difference of the DMI strengths across the interface, D1 and D2, the skyrmion
deflection is positive (∆y > 0) or negative (∆y < 0). The dots show the respective
trajectories of the skyrmion and the colors indicates the value of β considered,
for j � 2 × 1011Am−2 and ∆D/Dc � 0.05,0.025, − 0.025, − 0.05, respectively top-to-
bottom.
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A.3 Effects of the non-adiabatic spin transfer torque

Fig. A.2 shows the effects of the non-adiabatic spin transfer torque to the skyrmion
trajectories with a fixed damping parameter α � 0.02. The value of β does not affect the
deflection induced by the interface, but induces a small constant velocity transverse to
the applied current, as expected for a single skyrmion moving in the free space.

A.4 Skyrmion-vortex interaction for superconducting films
of arbitrary thicknesses

In order to calculate the stray field of the vortex in a superconducting film of
an arbitrary thickness dsc , we integrate Eqs. (6.6a) and (6.6b) numerically. Figs. A.3
(a) and (b) show the obtained stray fields for different values of dsc, with λ � 50 nm
and dI � 10 nm fixed, where we consider a finite vortex core by inserting the cutoff
factor exp(−ξ2k2), with ξ � 10 nm in Eqs. (6.6a) and (6.6b). Fig. A.3 (c) and (d) show
the skyrmion-vortex interaction energy and interaction force, respectively, calculated
as in Sec. 6.8.3.3 of the main text, for D � 0.8Dc . The dashed lines in Fig. A.3 (d) show
the pure-Zeeman component of the interaction force. Notice that even though for the

Figure A.3 – (a,b) Straymagnetic field of the vortex for different thickness of the superconducting
film, calculated in the plane of the FM film within the considered SC-FM hybrid. (c)
Skyrmion-vortex interaction energy calculated in the micromagnetic simulations as
a function of the distance between the skyrmion and the vortex cores, for dSC � 5,
10 and 20 nm. Here the energy curves were fitted by E � a/(r2

sv + bλ2)c , with a, b, c
the fitting parameters (yielding black dashed lines). (d) Corresponding interaction
force calculated by the derivative of the fitted curves in (c), the dashed lines denote
the pure-Zeeman component of the interaction force. In all calculations we take
λ � 50 nm, dI � 10 nm and D � 0.8Dc .
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considered parameters the skyrmion size is weakly affected by the presence of the vortex
field, small changes in the skymion shape can still result in a non-negligible contribution
of the non-Zeeman energy terms to the total skyrmion-vortex interaction.
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B
Supporting information for Part III-Magnonics and

spin-textures in two-dimensional magnetic materials

B.1 Spin wave dispersion relation in CrBr3 and CrI3
The precession of the ith spin is given by the first term in the Landau-Lifshitz-

Gilbert (LLG) equation [Eq. 2.15], where the effective field acting on the ith spin is given
by Beff

i � −∂Hi/∂Ŝi . From Eq. (8.3) we obtain

Beff
i � S2

J0
∑

j

Ŝ j + ∆
∑

j

Ŝz
j ẑ + 2Azz Ŝz

i ẑ
 (B.1)

where the sum in j runs over the three nearest-neighbours of the ith spin [see Fig. B.1]. The
SW dispersion is calculated by assuming the linearized solution Ŝz ≈ 1, Ŝx ≈ A0e i(k·r−ωt)

and Ŝy ≈ iA0e i(k·r−ωt), where A0 � 1 represents the SW amplitude; ω is the SW angular
frequency and r is the position of the considered spin. Substituting that into the LLG
equation,

∂Ŝx
i

∂t
� −

γ

(1 + α2)µ
[
Ŝy

i (B
eff
i )

z − Ŝz
i (B

eff
i )

y] , (B.2)

with the effective field given by Eq. (B.1), we obtain

ω �
γS2

(1 + α2)µ

3∆ + 2Azz
+ 3J0 − J0 Re ©«

∑
j

exp(ik · (r j − ri))
ª®¬
 , (B.3)

where,

Re ©«
∑

j

exp(ik · (r j − ri))
ª®¬ �


Re

(
e−ika + 2e

ika
2

)
� cos(ka) + 2 cos

(
ka
2

)
, if k ‖ n̂1,

Re
(
1 + e

−ik
√

3a
2 + e

ik
√

3a
2

)
� 1 + 2 cos

(
ka
√

3
2

)
, if k ‖ n̂2,

(B.4)
which results in Eqs. (8.3) and (8.5) of the main text.
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Figure B.1 – Illustration of spin sites. j � 1, 2 and 3 are the three nearest-neighbours of the ith

spin, and a the distance between nearest-neighbour Cr atoms.

B.1.1 DMI contribution

In the case where the CrX3 lattice experience non-zero DMI, the Hamiltonian for
the ith spin has the DMI contribution

H dmi
i �

∑
j

Di j · (Si × S j) � DS2Ŝi ·
∑

j

(Ŝ j × D̂i j), (B.5)

which results in the DMI field,

Bdmi
i � DS2

∑
j

(Ŝ j × D̂i j). (B.6)

Considering a symmetry break along the out-of-plane (ẑ) direction, such as that in Janus
structures [264] or in the presence of out-of-plane applied electric fields [292, 293], the
induced DMI vectors point along the directions D̂i j � ẑ × r̂i j , where r̂i j is the vector
connecting spins i and j. The DMI field becomes

Bdmi
i � DS2

∑
j

[Ŝ j × (ẑ × r̂i j)] � DS2
∑

j

(Ŝ j · r̂i j) · ẑ − DS2
∑

j

Ŝz
j r̂i j . (B.7)

For a SW propagating along the n̂1 (x̂) direction, the spins at sites j � 2 and j � 3 [see
Fig. B.1] point in the same direction, i.e., Ŝ2 � Ŝ3. In this way, Eq. (B.7) becomes

Bdmi
i � DS2[Ŝx

2 − Ŝx
1 ] · ẑ − DS2[Ŝz

2 − Ŝz
1] · x̂. (B.8)

Considering the continuum approximation

Ŝ2 ≈ Ŝi +
a
2
∂Ŝi

∂x
, (B.9a)

Ŝ1 ≈ Ŝi − a
∂Ŝi

∂x
, (B.9b)

the DMI field becomes

Bdmi
i ≈ DS2 3a

2

[
∂Ŝx

i

∂x
· ẑ −

∂Ŝz
i

∂x
· x̂

]
. (B.10)
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For the background magnetization lying in the yz-plane [see Fig. B.1], the linearized
solution for the SW can be written as

Ŝ ≈ 1n̂ + A0e i(k·r−ωt)x̂ + iA0e i(k·r−ωt) ê⊥, (B.11)

where n̂ is the direction of the magnetization; ê⊥ � n̂ × x̂; A0 � 1 represents the SW
amplitude; ω is the SW angular frequency and r is the position of the considered spin.
Substituting Eqs. (B.10) and (B.11) into the LLG equation

∂Ŝx
i

∂t
� −

γ

(1 + α2)µ
[
Ŝe⊥

i (B
dmi
i )

n − Ŝn
i (B

dmi
i )

e⊥
]
, (B.12)

we obtain

iωŜx
i �

γDS2

(1 + α2)µ
3a
2 ikŜx

i ẑ · ê⊥ + O(A2
0). (B.13)

Therefore, the linearized solution for the SW dispersion relation is

ωDM �
γS2

(1 + α2)µ
3aD sin θM

2 k , (B.14)

where θM is the angle between the magnetization direction and the ẑ direction.
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B.2 Magnetic parameters for CrBr3 and CrI3

CrI3 | Strain Jxx J y y Jzz Jx y Jxz J yz

(%) (meV) (meV) (meV) (meV) (meV) (meV)
Pair (1-2)

-5 -1.95 -0.91 -1.69 0.00 0.00 0.74
-4 -2.79 -1.68 -2.47 0.00 0.00 0.76
-3 -3.51 -2.32 -3.13 0.00 0.00 0.79
-2 -4.13 -2.89 -3.72 0.00 0.00 0.79
-1 -4.62 -3.34 -4.18 0.00 0.00 0.81
0 -5.10 -3.72 -4.63 0.00 0.00 0.83
1 -5.49 -4.06 -4.99 0.00 0.00 0.83
2 -5.81 -4.26 -5.29 0.00 0.00 0.86
3 -6.09 -4.47 -5.55 0.00 0.00 0.88
4 -6.30 -4.60 -5.75 0.00 0.00 0.90
5 -6.52 -4.74 -5.94 0.00 0.00 0.91

Pair (2-3)
-5 -1.17 -1.69 -1.69 -0.45 0.64 -0.37
-4 -1.96 -2.51 -2.47 -0.48 0.66 -0.38
-3 -2.62 -3.21 -3.13 -0.52 0.68 -0.40
-2 -3.20 -3.82 -3.72 -0.54 0.68 -0.40
-1 -3.66 -4.30 -4.18 -0.55 0.70 -0.41
0 -4.07 -4.76 -4.63 -0.60 0.72 -0.42
1 -4.42 -5.13 -4.99 -0.62 0.72 -0.42
2 -4.65 -5.42 -5.29 -0.67 0.74 -0.43
3 -4.88 -5.69 -5.55 -0.70 0.76 -0.44
4 -5.03 -5.88 -5.75 -0.74 0.78 -0.45
5 -5.19 -6.08 -5.94 -0.77 0.79 -0.46

Pair (2-5)
-5 -1.17 -1.69 -1.69 0.45 -0.64 -0.37
-4 -1.96 -2.51 -2.47 0.48 -0.66 -0.38
-3 -2.62 -3.21 -3.13 0.52 -0.68 -0.40
-2 -3.20 -3.82 -3.72 0.54 -0.68 -0.40
-1 -3.66 -4.30 -4.18 0.55 -0.70 -0.41
0 -4.07 -4.76 -4.63 0.60 -0.72 -0.42
1 -4.42 -5.13 -4.99 0.62 -0.72 -0.42
2 -4.65 -5.42 -5.29 0.67 -0.74 -0.43
3 -4.88 -5.69 -5.55 0.70 -0.76 -0.44
4 -5.03 -5.88 -5.75 0.74 -0.78 -0.45
5 -5.19 -6.08 -5.94 0.77 -0.79 -0.46

Table 5 – Exchange parameters for biaxial strain in CrI3 obtained from first-principle calculations
[see Ref. [34] for details]. Jxx , J y y , and Jzz are diagonal elements, and Jx y � J yx ,
Jxz � Jzx , J yz � Jz y the off-diagonal elements of the exchange matrix. Aii is SIA
parameter, same for each Cr site. Pairs (i-j) are indicated in Fig. 8.1 (a).
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CrBr3 | Strain Jxx J y y Jzz Jx y Jxz J yz

(%) (meV) (meV) (meV) (meV) (meV) (meV)
Pair (1-2)

-5 -1.24 -1.06 -1.21 0.00 0.00 0.08
-4 -1.87 -1.72 -1.81 0.00 0.00 0.09
-3 -2.39 -2.23 -2.35 0.00 0.00 0.08
-2 -2.79 -2.65 -2.75 0.00 0.00 0.10
-1 -3.18 -3.01 -3.14 0.00 0.00 0.10
0 -3.45 -3.29 -3.42 0.00 0.00 0.09
1 -3.67 -3.50 -3.63 0.00 0.00 0.10
2 -3.85 -3.68 -3.81 0.00 0.00 0.09
3 -3.98 -3.80 -3.94 0.00 0.00 0.09
4 -4.07 -3.89 -4.02 0.00 0.00 0.10
5 -4.13 -3.94 -4.08 0.00 0.00 0.10

Pair (2-3)
-5 -1.11 -1.20 -1.21 -0.08 0.07 -0.04
-4 -1.76 -1.83 -1.81 -0.06 0.08 -0.05
-3 -2.27 -2.35 -2.35 -0.07 0.07 -0.04
-2 -2.69 -2.76 -2.75 -0.06 0.09 -0.05
-1 -3.05 -3.14 -3.14 -0.07 0.09 -0.05
0 -3.33 -3.41 -3.42 -0.07 0.08 -0.05
1 -3.54 -3.63 -3.63 -0.07 0.09 -0.05
2 -3.72 -3.81 -3.81 -0.07 0.08 -0.05
3 -3.85 -3.94 -3.94 -0.08 0.08 -0.05
4 -3.94 -4.03 -4.02 -0.08 0.09 -0.05
5 -3.99 -4.08 -4.08 -0.08 0.09 -0.05

Pair (2-5)
-5 -1.11 -1.21 -1.20 0.08 -0.07 -0.04
-4 -1.76 -1.81 -1.83 0.06 -0.08 -0.05
-3 -2.27 -2.35 -2.35 0.07 -0.07 -0.04
-2 -2.69 -2.75 -2.76 0.06 -0.09 -0.05
-1 -3.05 -3.14 -3.14 0.07 -0.09 -0.05
0 -3.33 -3.42 -3.41 0.07 -0.08 -0.05
1 -3.54 -3.63 -3.63 0.07 -0.09 -0.05
2 -3.72 -3.81 -3.81 0.07 -0.08 -0.05
3 -3.85 -3.94 -3.94 0.08 -0.08 -0.05
4 -3.94 -4.02 -4.03 0.08 -0.09 -0.05
5 -3.99 -4.08 -4.08 0.08 -0.09 -0.05

Table 6 – Exchange parameters for biaxial strain in CrBr3 obtained from first-principle calcula-
tions [see Ref. [34] for details]. Jxx , J y y , and Jzz are diagonal elements, and Jx y � J yx ,
Jxz � Jzx , J yz � Jz y the off-diagonal elements of the exchange matrix. Aii is SIA
parameter, same for each Cr site. Pairs (i-j) are indicated in Fig. 8.1 (a).
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Strain Azz (CrI3) Azz (CrBr3)
(%) (meV) (meV)
-5 -0.16 0.02
-4 -0.14 0.01
-3 -0.12 0.00
-2 -0.10 -0.01
-1 -0.08 -0.01
0 -0.07 -0.01
1 -0.05 -0.02
2 -0.04 -0.03
3 -0.03 -0.03
4 -0.02 -0.03
5 -0.02 -0.03

Table 7 – SIA parameter for biaxial strain in CrI3 and CrBr3 obtained from first-principle
calculations [see Ref. [34] for details].Azz is the same for each Cr site.

pair Jxx Jx y Jxz J yx J y y J yz Jzx Jz y Jzz

(i- j) (meV) (meV) (meV) (meV) (meV) (meV) (meV) (meV) (meV)
CrI3

(1-2) -4.3 0.53 -0.03 1.6 -3.82 1.4 -0.43 0.83 -3.47
(2-3) -11.65 -5.31 1.55 -4.53 -11.31 4.49 -3.11 -3.61 -13.42
(2-5) -4.09 0.09 -0.62 1.01 -4.47 -0.06 -0.44 -0.4 -4.24
(3-4) -4.6 -0.34 -0.15 -0.22 -3.66 0.63 0.06 0.61 -4.12
(3-6) -4.03 0.46 -0.18 0.08 -4.09 -0.11 -0.94 -0.13 -4.12

CrBr3
(1-2) -2.91 -0.08 0.11 -0.59 -2.8 0.03 -0.14 0.13 -2.91
(2-3) -32.73 -2.41 1.23 -2.26 -32.75 2.29 -1.39 -2.19 -33.08
(2-5) -2.93 -0.02 -0.13 0.06 -2.91 -0.09 -0.02 -0.09 -2.92
(3-4) -3.12 0.02 -0.05 -0.11 -2.88 0.11 0.01 0.08 -2.92
(3-6) -2.81 0.1 0.05 -0.03 -2.9 -0.11 -0.23 0.07 -2.9

Table 8 – Total exchange parameters for the case of isolated defect (halide vacancy) in CrI3
and CrBr3, obtained from first-principle calculations [41]. Pairs (i-j) are indicated in
Fig. 8.5 (a).
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pair Jxx Jx y Jxz J yx J y y J yz Jzx Jz y Jzz

(i- j) (meV) (meV) (meV) (meV) (meV) (meV) (meV) (meV) (meV)
CrI3

(1-2) -4.49 0.32 0.01 0.2 -3.99 -0.32 -0.86 -0.33 -4.35
(2-3) -1.82 1.58 -1.16 -3.26 -1.1 -1.15 -2.25 -1.06 -4.08
(2-5) -12.71 4.2 -0.03 -4.27 -12.13 3.76 -0.57 -3.47 -9.85
(3-4) -4.81 0.11 -0.34 0.56 -4.24 -0.68 -0.29 -0.52 -4.59
(3-6) -12.71 4.2 -0.03 -4.27 -12.13 3.76 -0.57 -3.47 -9.85

CrBr3
(1-2) -3.46 0.05 -0.09 0.03 -3.3 0.1 -0.27 0.1 -3.42
(2-3) -2.61 0.37 -0.4 -0.57 -2.42 0.07 -0.12 -0.17 -2.61
(2-5) -19.89 1.5 -0.05 -1.5 -19.8 2.11 -0.09 -2.08 -19.91
(3-4) -3.25 0.03 0.01 0.01 -3.15 -0.11 -0.06 -0.04 -3.23
(3-6) -19.89 1.5 -0.05 -1.5 -19.8 2.11 -0.09 -2.08 -19.91

Table 9 – Total exchange parameters for the case of a line of defects in CrI3 and CrBr3, obtained
from first-principle calculations [41]. Pairs (i-j) are indicated in Fig. 8.7 (a).
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