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Abstract 43 

Understanding how neurons of the striatum are formed and integrate into complex synaptic circuits is 44 

essential to provide insight into striatal function in health and disease. In this Review, we summarize 45 

our current understanding of the development of striatal neurons and associated circuits with a focus 46 

on their embryonic origin. Specifically, we address the role of distinct types of embryonic 47 

progenitors, found in the proliferative zones of the ganglionic eminences in the ventral 48 

telencephalon, in the generation of diverse striatal interneurons and projection neurons. Indeed, 49 

recent evidence would suggest that embryonic progenitor origin dictates key characteristics of 50 

postnatal cells, including their neurochemical content, their location within striatum and their long-51 

range synaptic inputs. We also integrate recent observations regarding embryonic progenitors in 52 

cortical and other regions and discuss how this might inform future research on the ganglionic 53 

eminences. Lastly, we examine how embryonic progenitor dysfunction can alter striatal formation, as 54 

exemplified in Huntington’s disease and Autism spectrum disorder, and how increased 55 

understanding of embryonic progenitors can have significant implications for future research 56 

directions and the development of improved therapeutic options. 57 

 58 

Significance Statement  59 

This Review highlights recently defined novel roles for embryonic progenitor cells in shaping the 60 

functional properties of both projection neurons and interneurons of the striatum. It outlines the 61 

developmental mechanisms that guide neuronal development from progenitors in the embryonic 62 

ganglionic eminences to progeny in the striatum. Where questions remain open, we integrate 63 

observations from cortex and other regions to present possible avenues for future research. Lastly, 64 

we provide a progenitor-centric perspective onto both Huntington’s disease and Autism spectrum 65 

disorder. We suggest that future investigations and manipulations of embryonic progenitor cells in 66 

both research and clinical settings will likely require careful consideration of their great intrinsic 67 

diversity and neurogenic potential. 68 

 69 

 70 

  71 
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Introduction 72 

Understanding how neuronal cell identity and precise synaptic circuits in the brain emerge during 73 

development remains a fundamental goal in neuroscience. The discovery of radial glial cells (RGCs) 74 

as the main progenitor cell in the developing nervous system, and observations that RGCs can give 75 

rise not only to neurons, but also to a diverse population of additional progenitors, have made 76 

understanding the functional roles and contributions of progenitors to brain development a key focus 77 

for neuroscientists. Indeed, it is becoming increasingly clear that the remarkable diversity of 78 

embryonic progenitors is directly linked to the neuronal diversity, synaptic connectivity and circuit 79 

function in a variety of regions in the adult brain (Yu et al., 2009; Yu et al., 2012; Tyler et al., 2015; 80 

Kelly et al., 2018; Ellender et al., 2019; Guillamon-Vivancos et al., 2019; Matsushima & Graybiel, 81 

2020; van Heusden et al., 2021). This Review will focus on the roles for diverse embryonic 82 

progenitors in shaping the development and properties of one brain region, the striatum.  83 

 84 

The striatum is the main input nucleus of the basal ganglia, a group of interconnected subcortical 85 

nuclei that have critical functional roles in motor behavior, learning, and cognition (Graybiel et al., 86 

1994; Grillner et al., 2005; Yin & Knowlton, 2006; Kravitz et al., 2010; Cui et al., 2013; Tecuapetla 87 

et al., 2016), and it has been ascribed key computational roles in action selection, decision-making 88 

and reinforcement learning (Redgrave et al., 1999; Reynolds et al., 2001; Samejima et al., 2005; 89 

Bogacz & Gurney, 2007; Yartsev et al., 2018). The striatum is a relatively large brain nucleus, 90 

consisting of over a million neurons in the mouse. The neurons can be divided into the GABAergic 91 

spiny projection neurons (SPNs), which make up ~95% of all striatal neurons, and a diverse 92 

population of interneurons, which make up the remaining ~5% (Kreitzer & Malenka, 2008; Tepper et 93 

al., 2010; Tepper et al., 2018). The SPNs are classically divided into the direct pathway dopamine D1 94 

receptor-expressing SPN (dSPN) and the indirect pathway dopamine D2 receptor-expressing SPN 95 

types (iSPN), respectively forming the striatonigral and striatopallidal pathways and sending major 96 

projections to the substantia nigra pars reticulata (SNr)/internal globus pallidus (GPi) or the external 97 

globus pallidus (GPe) (Gerfen et al., 1990; Day et al., 2008; Gertler et al., 2008). The resident 98 

striatal interneuron population can be subdivided into cholinergic interneurons and a diverse group of 99 

GABAergic interneurons.  100 

 101 

At first glance the striatum has a less obvious structure than other brain regions. For example, the 102 

cortex exhibits a distinct laminar organization with various layers forming sequentially during 103 

progressive embryonic periods, and each layer consisting of distinct cell types (Douglas & Martin, 104 

2004). In contrast, the striatum seems to consist of vast numbers of intermingled dSPNs, iSPNs and 105 

interneurons. However, several organizing principles of the striatum exist and are applicable to large 106 

populations of diverse striatal cells. These include distinct functional domains related to specific 107 

anatomical subregions of striatum (Graybiel & Ragsdale, 1978; Alexander et al., 1986; Graybiel, 108 

1990; Haber, 2008; Pan et al., 2010; Oh et al., 2014; Hintiryan et al., 2016; Hunnicutt et al., 2016; 109 

McGregor et al., 2019; Lee et al., 2020). Indeed, one classical distinction divides the striatum into the 110 

dorsolateral striatum (DLS) and dorsomedial striatum (DMS), with each anatomical subregion 111 

receiving innervation from different cortical and thalamic areas (McGeorge & Faull, 1989; Voorn et 112 

al., 2004; Smith et al., 2014). Other distinctions are based on differential expression of a set of 113 

neurochemical markers, for example the μ-opioid receptor, which segregates large populations of 114 
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dSPNs, iSPNs and associated interneurons into μ-opioid rich striosome/patch compartments and μ-115 

opioid poor matrix compartments (Pert et al., 1976; Graybiel & Ragsdale, 1978; Herkenham & Pert, 116 

1981; Graybiel, 1990; Crittenden & Graybiel, 2011), which are thought to differentially control 117 

reward-guided behavior (Gerfen, 1984; 1989; Fujiyama et al., 2011). This Review will discuss the 118 

role of diverse embryonic progenitors in shaping these and other striatal subregions.  119 

 120 

Aberrant development and integration of diverse striatal neurons into circuits can lead to a wide 121 

range of disorders with motor and cognitive symptoms (Arber et al., 2015; Peixoto et al., 2019). We 122 

further this discussion by addressing how embryonic progenitors generate diverse populations of 123 

striatal neurons as well as exploring a growing body of literature suggesting that pathologies such as 124 

Huntington’s disease (HD) and Autism spectrum disorder (ASD) arise from aberrant embryonic 125 

progenitor behavior. Furthermore, we discuss throughout the recent advances in technology that 126 

allow more sophisticated labeling and manipulation of embryonic progenitors, thus opening 127 

possibilities for both novel investigations and potential development of treatment options. Finally, 128 

where questions remain regarding the development of the striatum, we provide hypotheses and 129 

insights from studies in the cortex and other brain regions. 130 

 131 

Embryonic progenitors of the ventral telencephalon  132 

All neural progenitors descend from the neuroepithelial cells that form the neural tube in the 133 

developing embryo. After closure of the neural tube, distinct rostral, medial, and caudal regions 134 

develop to ultimately give rise to the frontal, middle, and hindbrain regions of the brain (Stiles & 135 

Jernigan, 2010). This Review mainly focuses on the developing rostral region, the telencephalon, in 136 

relation to the striatum; for a focus on basal ganglia development see (Rubenstein & Campbell, 137 

2020). 138 

A combination of morphogenetic movements and proliferation between embryonic day (E)9 and E11 139 

in mice establish further discrete proliferative regions in the rostral telencephalon: a dorsal region 140 

that gives rise to the cortex; a ventrolateral region that forms the lateral ganglionic eminence (LGE) 141 

and mainly gives rise to the SPNs of the striatum (Deacon et al., 1994; Olsson et al., 1998; Wichterle 142 

et al., 2001; Nery et al., 2002); and a ventromedial region forming the medial ganglionic eminence 143 

(MGE) that gives rise to the interneurons of the striatum, globus pallidus and cortex, among others 144 

(Marin et al., 2000; Anderson et al., 2001; Rallu et al., 2002; Butt et al., 2005; Flandin et al., 2010; 145 

Dodson et al., 2015). In addition, adjacent ventral structures such as the caudal ganglionic eminence 146 

(CGE) (Nery et al., 2002; Ma et al., 2012; Munoz-Manchado et al., 2016), preoptic/anterior 147 

entopeduncular areas (POa/AEP) (Marin et al., 2000; Gelman et al., 2011) and septal 148 

neuroepithelium (SNE) (Magno et al., 2017) also give rise to interneurons (Marin et al., 2000) 149 

(Figure 1A). Initial gradients of diffusible factors (Rallu et al., 2002) and distinct transcription factor 150 

cascades (Schuurmans & Guillemot, 2002; Silberberg et al., 2016) contribute to this dorsoventral 151 

regional patterning.  152 

The first neuronal progenitor cells (NPCs) in each of these regions consist mainly of radial glial cells 153 

(RGCs), which divide at the ventricular wall to generate further progenitors that inhabit both the 154 

ventricular and subventricular zones (VZ and SVZ) and young neurons that migrate to the primordial 155 

striatum and other structures (Marin et al., 2000). The daughter progenitor cells consist of additional 156 
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RGCs plus a diverse population of intermediate progenitors (IPs) (Figure 1B). These IPs can amplify 157 

the number of concurrently actively dividing cells in the developing brain (Noctor et al., 2004) and, 158 

as discussed later, convey unique properties to their daughter neurons. As progenitors divide, 159 

postmitotic neurons of the ventral telencephalon follow a well-defined developmental sequence 160 

starting with their migration from their birthplace to their designated brain regions (Villar-Cervino et 161 

al., 2015) progressively differentiating towards their final identity. During later postnatal stages, 162 

these immature neurons initially connect widely followed by periods of synaptic refinement and 163 

controlled apoptosis in maturing circuits (Figure 1C). At approximately E18 in mice, the neurogenic 164 

divisions within the embryonic brain switch and become gliogenic, generating both astrocytes and 165 

oligodendrocytes (Anthony & Heintz, 2008; Minocha et al., 2017; Turrero Garcia & Harwell, 2017). 166 

Although this review will mainly focus on progenitor-derived neurons, the extent to which diversity 167 

of embryonic progenitors is related to astrocyte and oligodendrocyte diversity is likely an interesting 168 

line of future research. 169 

 170 

Embryonic progenitors of the LGE and their progeny 171 

The formation of the LGE as a clearly visible structure in the subpallium occurs around E11 in mice 172 

and is followed by the onset of neurogenesis by a diverse population of neurogenic progenitors that 173 

inhibit the VZ and SVZ (Halliday & Cepko, 1992; Sheth & Bhide, 1997; Olsson et al., 1998; 174 

Stenman et al., 2003; Gotz & Huttner, 2005; Mason et al., 2005; Sousa & Fishell, 2010; Pilz et al., 175 

2013; Kelly et al., 2018){van Heusden, 2021 #6256}. The VZ of the LGE is thought to contain 176 

several types of embryonic progenitor cell, of which two divide at the ventricular surface: classical 177 

RGCs with a bipolar morphology that exhibit a basal and apical process during division, and short 178 

neural precursors (SNPs), which exhibit a rounded morphology and tend to lack processes during 179 

division. Other progenitors in the VZ have been shown to divide at subapical positions away from 180 

the ventricular surface; these have been named sub-apical progenitors (SAPs) (Pilz et al., 2013). 181 

Finally, the SVZ contains progenitor types that lack a process during division and resemble basal 182 

progenitors (BPs), as well as progenitors that retain one of more processes and resemble RGCs. The 183 

latter progenitors divide in the basal aspects of the LGE and are called basal radial glia cells (bRGC) 184 

(Pilz et al., 2013) (Figure 1B). Detailed analysis of lineage progression amongst these progenitor 185 

types suggests that the majority of LGE RGCs generate daughter progenitor cells, which continue to 186 

divide without directly generating postmitotic neurons (Pilz et al., 2013). This is unlike RGCs in the 187 

cortex and MGE (Kriegstein & Alvarez-Buylla, 2009) and suggests that most striatal SPNs are 188 

generated from IP. Indeed, lineage analysis suggests that LGE RGCs generates mainly additional 189 

RGCs, SNPs, or SAPs. In turn, the SNPs mostly generate further SNPs or SAPs, while SAPs 190 

generate further SAPs, BPs, or post-mitotic neurons (Pilz et al., 2013) (Figure 1B). Many of these 191 

embryonic progenitors are not unique to the LGE and have also been characterized in detail in 192 

proliferative zones of the cortex (Noctor et al., 2001; Noctor et al., 2004; Gal et al., 2006; 193 

Kowalczyk et al., 2009; Stancik et al., 2010; Shitamukai et al., 2011; Wang et al., 2011; Franco & 194 

Muller, 2013; Taverna et al., 2014), although their properties can differ between these structures. For 195 

example, cortical SNPs tend to have relatively long cell-cycle kinetics and often generate neurons 196 

directly (Gal et al., 2006; Stancik et al., 2010; Tyler & Haydar, 2013), whereas those in the LGE 197 

tend to have relatively short cell-cycle kinetics and produce further progenitors (Pilz et al., 2013).  198 
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The morphological diversity of LGE progenitors coexists alongside broader divisions of LGE based 199 

on differential transcription factor expression. For example, the transcription factor ETV1/Er81 200 

delineates the dorsal regions of the LGE, which can be further subdivided into a lateral subregion, 201 

with high expression of the transcription factors paired-box protein 6 (Pax6) and Genetic-Screened 202 

Homeobox 2 (Gsh2) and bordering the cortex (Yun et al., 2001; Yun et al., 2003), and a more medial 203 

region with low Pax6 but high Gsh2 expression (Flames et al., 2007). Other studies have revealed 204 

that the dorsally situated Etv1/Er81+ progenitors tend to generate olfactory bulb (OB)-fated 205 

interneurons, whereas the more ventrally located Isl1+ progenitors supply SPNs of the striatum, thus 206 

providing the first evidence that distinct progenitor domains generate distinct neuron populations 207 

(Yun et al., 2001; Stenman et al., 2003) (Figure 1A).  208 

Specific transcription factors, such as GS Homeobox 1/2 (Gsx1/2), Achaete-scute homolog 1 (Ascl1), 209 

and Distal-Less Homeobox 1/2 (Dlx1/2), as well as Notch signaling, mediate cell-autonomous and 210 

non-autonomous regulation of neurogenesis in the LGE and control ordered production of striatal 211 

neurons (Yun et al., 2002; Mason et al., 2005). These can further delineate different LGE VZ and 212 

SVZ regions (Puelles et al., 2000; Toresson et al., 2000; Yun et al., 2001; Stenman et al., 2003; 213 

Flames et al., 2007; Petryniak et al., 2007; Wang et al., 2013). Key in this process are the Gsx 214 

(Corbin et al., 2000; Toresson et al., 2000; Yun et al., 2001; Yun et al., 2003; Wang et al., 2013; 215 

Roychoudhury et al., 2020; Salomone et al., 2021) and Dlx gene families expressed during 216 

maturation of both progenitors and neurons in the LGE (Porteus et al., 1991; Porteus et al., 1994; 217 

Anderson et al., 1997; Liu et al., 1997; Eisenstat et al., 1999) and governing further downstream 218 

transcriptional networks controlling LGE and striatal development (Long et al., 2009; Lindtner et al., 219 

2019). Indeed, it has been suggested that the early LGE contains Gsx1/2+ neuroepithelial cells that 220 

produce multiple progenitor types characterized by Ascl1 and Dlx expression (Yun et al., 2002; 221 

Martin-Ibanez et al., 2012). The Ascl1+/Dlx1/2- and Ascl1+/Dlx1/2+ progenitors are inferred to 222 

emerge in sequence (Martin-Ibanez et al., 2012) and interact through Notch-mediated lateral 223 

inhibition to coordinate both proliferation and neurogenesis (Mason et al., 2005). The progenitors 224 

within the LGE can be further distinguished through differential transcription factor expression from 225 

those found in neighboring eminences. For example, the MGE expresses the transcription factors 226 

NK2 Homeobox 1 (Nkx2.1) and LIM/homeobox protein 6 (Lhx6), whereas the LGE does not (Chen 227 

et al., 2017; Mayer et al., 2018).  228 

From this transcriptional and morphologically diverse population of embryonic progenitors in the 229 

LGE the vast majority of post-mitotic neurons become GABAergic striatal SPNs, with a smaller 230 

population maturing into OB interneurons (Wichterle et al., 1999; Corbin et al., 2001; Wichterle et 231 

al., 2001; Stenman et al., 2003). The generation of SPNs starts at approximately embryonic day 232 

E10.5 and continues until birth, E19.5, in mice (Deacon et al., 1994; Sheth & Bhide, 1997; 233 

Matsushima & Graybiel, 2020) (Figure 2B), although some are also born during early postnatal 234 

stages (Das & Altman, 1970; Bayer, 1984; Wright et al., 2013). The orderly production of early and 235 

late-born SPNs within the LGE is regulated in part through various downstream transcription factors 236 

(e.g. Ebf1, Isl1, Sp9) (Zhang et al., 2016; Merchan-Sala et al., 2017), which can regulate SPN 237 

subtype generation and survival, as well as allowing for their selective labeling during early 238 

development (Merchan-Sala et al., 2017). Indeed, for the generation of dSPNs it has been shown that 239 

the transcription factor Isl1 is important (Ehrman et al., 2013; Lu et al., 2014) with conditional loss 240 
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leading to early cell-death of newly born dSPNs (Ehrman et al., 2013), likely though loss of Foxo1 241 

expression (Waclaw et al., 2017). Additional factors such as ebf1 also play a role in SPN survival 242 

(Lobo et al., 2006; Lobo et al., 2008), but with loss mainly affecting dSPNs during later stages of 243 

neurogenesis. For the generation and survival of iSPNs, it has been shown that the transcription 244 

factors Ikaros and Helios are important and also regulate the expression of the iSPN marker 245 

enkephalin (Martin-Ibanez et al., 2010; Martin-Ibanez et al., 2012). In addition, the expression of the 246 

transcription factors sp8 and sp9 (Long et al., 2009; Zhang et al., 2016) are further required for iSPN 247 

survival as double KO results in a near complete loss of iSPNs (Xu et al., 2018) similar to KO of 248 

their downstream transcription factor six3 (Song et al., 2021). 249 

 250 

Embryonic progenitors of the MGE and their progeny 251 

Striatal interneurons, which exert a strong regulatory control over SPN activity and consequently 252 

striatal output, are derived primarily from the medial ganglionic eminence (MGE, Figure 1A), 253 

Therefore, we will first outline what is currently known about MGE progenitors and subsequently 254 

introduce the progenitors in other structures that produce the remaining striatal interneurons.  255 

Like the LGE, the MGE arises from the ventral region of the neural tube at approximately E9.5 and 256 

is divided into the VZ and SVZ progenitor zones. In the VZ, the primary progenitor is the RGC, 257 

which in addition to self-replication, can give rise to other progenitors and neurons (Turrero Garcia 258 

& Harwell, 2017). Other progenitors in the MGE include SAPs and SNPs of the VZ, in addition to 259 

other IPs and bRGC of the SVZ (Turrero Garcia & Harwell, 2017); Figure 1B). The generation of 260 

such progenitors occurs in a lineage-specific manner; for example, SNPs arise from the direct 261 

division of RGCs, whereas the generation of bRGs is achieved through SAP intermediates (Pilz et 262 

al., 2013; Petros et al., 2015); Figure 1B). 263 

As in the LGE, the morphological diversity of embryonic progenitors in the MGE is accompanied by 264 

heterogeneity in the combinatorial expression of different transcription factors (Flames et al., 2007; 265 

Flandin et al., 2010; Lopes et al., 2012). In situ hybridization studies for multiple target genes such 266 

as Dlx2, Pax6, Nkx2.1, Lhx6 and Lhx7 have revealed subdomains formed by groups of 267 

transcriptionally similar progenitors that are localized to specific regions of the MGE (Flames et al., 268 

2007). Each of these genes plays a distinct role in the control of cell identity within the subdomains. 269 

For example, Dlx genes drive the upregulation of the GABA synthesizing enzyme glutamic acid 270 

decarboxylase and delineate the GABAergic interneurons (Stuhmer et al., 2002; Le et al., 2017). 271 

Local populations of apical progenitors (AP) and BP can also be further divided into sub-populations 272 

based on their transcriptional identity which controls their metabolism, cell-cycle dynamics or 273 

overall neurogenic role. For example, one AP population displays high expression of genes required 274 

for oxidative phosphorylation (Atp5e and Cox6c), whereas another population of APs highly 275 

expresses DNA replication genes (Mcm5, Mcm6 and Mcm7) and translation regulators (Eif4g1, 276 

Eif2s1 and Eif3b) (Chen et al., 2017). On the other hand, BPs can be divided into two populations 277 

based on the expression levels of glutamic acid decarboxylase 2 (Gad2) and aristaless-related 278 

homeobox (Arx), which represses the inhibition of cell-cycle progression (Lim et al., 2019). Co-279 

expression of Coup-TF1 and Coup-TF2 in distinct progenitor subdomains of the MGE directly 280 
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controls cell-cycle dynamics and neurogenic differentiation (Hu et al., 2017). Upon CoupTF-2 281 

ablation, cell proliferation is perturbed and the resulting cell fate is shifted. Thus, distinct progenitors 282 

in the MGE show different transcriptional and functional properties, which likely contributes to the 283 

generation of striatal interneuron diversity. 284 

 285 

MGE progenitors give rise to a widely heterogeneous and dispersed population of interneurons that 286 

populate brain areas such as the cortex, hippocampus, globus pallidus and nucleus accumbens (Marin 287 

et al., 2000) and can be differentiated based on their chemical, electrical and morphological 288 

properties. The primary striatal interneuron subtypes are identified by their expression of 289 

parvalbumin (PV), somatostatin (SST), or choline acetyltransferase (ChAT) and are diverse 290 

regarding their connectivity patterns and intrinsic properties. For example, PV+ fast-spiking 291 

interneurons form short-range connections with SPNs and exert strong inhibition that can regulate 292 

action potential initiation in both dSPNs and iSPNs, thus mediating feedforward inhibition over 293 

striatal output (Mallet et al., 2005; Gittis et al., 2011; O'Hare et al., 2017; Owen et al., 2018). These 294 

fast-spiking interneurons receive dense innervation from the cortex, with smaller inputs from both 295 

thalamic projections and striatal ChAT+ cholinergic interneurons (CINs), and output to multiple 296 

SPNs with firing rates of up to 400 Hz through their dense axonal field (Kita, 1993). In contrast, 297 

SST+ interneurons co-express one or both of the neurochemical markers neuropeptide Y (NPY) and 298 

nitric oxide synthase (NOS) and are commonly referred to as low-threshold spiking (LTS) 299 

interneurons (Kawaguchi et al., 1995; Munoz-Manchado et al., 2016; Munoz-Manchado et al., 300 

2018). These neurons are also primarily innervated by monosynaptic, excitatory inputs coming from 301 

cortex, but they differ from PV+ interneurons in that they form longer-range connections with SPNs 302 

and show significantly lower levels of connectivity (Assous et al., 2019). Moreover, these neurons 303 

are innervated by CINs and mediate cholinergic-mediated feedforward inhibition (English et al., 304 

2011). Finally, the CINs display a range of transcriptional, morphological, and physiological 305 

properties (Magno et al., 2017; Munoz-Manchado et al., 2018). For example, it has been shown that 306 

the transcription factors Lhx6 and ETV1/Er81 segregate striatal CINs into functional subtypes 307 

(Lozovaya et al., 2018; Ahmed et al., 2019; Ahmed et al., 2021). In particular, the Lhx6-expressing 308 

CINs, also called cholinergic-GABAergic interneurons (Lozovaya et al., 2018), display different 309 

physiological properties with higher firing rate and larger dendritic field compared to other CINs. 310 

Indeed, co-expression of neurotransmitters such as acetylcholine, glutamate, and GABA in different 311 

CINs further highlight their functional diversity (Nelson et al., 2014; Granger et al., 2016). Newly 312 

developed approaches e.g. AAV-based tools (Vormstein-Schneider et al., 2020) (Table 1) will help 313 

to selectively label and further study of these diverse interneurons. 314 

Other embryonic progenitors and their progeny 315 

While most striatal interneurons are derived from the MGE, smaller populations originate from other 316 

embryonic structures, including the POA and SNE, which are both situated ventrally to the MGE, as 317 

well as the caudal ganglionic eminence (CGE) (Marin et al., 2000; Ma et al., 2012) (Figure 1A). The 318 

CGE is a chemically distinct proliferation domain originating from the caudal merging of the MGE 319 

and LGE and is classically defined by the expression of the 5HT3a serotonin receptor (Nery et al., 320 

2002; Lee et al., 2010) (Figure 1C). The peak proliferation of CGE-derived NPCs occurs 3 days after 321 

that of MGE-derived progenitors (Miyoshi et al., 2010). Approximately 20% of the CGE-derived 322 
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neurons contribute to a population of striatal PV+ fast-spiking interneurons (Miyoshi et al., 2010) and 323 

specifically express 5HT3a (Munoz-Manchado et al., 2016). The remaining interneurons include a 324 

unique population of late-spiking neurogliaform cells and low-threshold-spiking cells, both of which 325 

lack the expression of known interneuron markers (Munoz-Manchado et al., 2018). Other striatal 326 

interneuron subtypes include a substantial population of Tyrosine Hydroxylase (TH) positive 327 

interneurons comprising electrophysiologically distinct cell subtypes (Mao et al., 2019). Striatal TH+ 328 

interneurons are not dopaminergic, but rather are a type of GABAergic interneuron that expresses 329 

TH without the other requisite enzymes or transporters to operate as dopaminergic neurons. These 330 

interneurons play an important role in striatal function through fast GABAergic synaptic 331 

transmission. They respond to local or cortical stimulation with glutamatergic excitatory postsynaptic 332 

potentials (EPSPs) and exert widespread GABAergic inhibition onto both dSPNs and iSPNs and 333 

between CINs (Xenias et al., 2015; Dorst et al., 2020). Modulation of the properties of TH+ 334 

interneurons by dopamine and acetylcholine may play important roles in mediating the striatal 335 

effects of these neuromodulators, with potentially important implications in disorders affecting the 336 

striatum (Ibanez-Sandoval et al., 2015). The positional fate, morphology, and neurochemical identity 337 

of CGE-derived interneurons in cortex were shown to be dependent on the progenitor domain from 338 

which they arise (Torigoe et al., 2016), but no evidence has directly reported whether this extends to 339 

the CGE-derived interneurons of the striatum. 340 

Interestingly, progenitors of the POA and SNE express the transcription factor Nkx2.1 and 341 

also generate neurons expressing ChAT+, PV+, and SST+ (Marin et al., 2000) (Figure 1A). As 342 

smaller contributors to the overall interneuron populations in the cortex and striatum, these regions 343 

have been somewhat neglected, so further investigation is needed. This is highlighted by the fact that 344 

the morphological properties of SNE and POA progenitors are not yet clearly defined within the 345 

literature. Yet, it is known that POA progenitors are transcriptionally distinct from those in the MGE, 346 

expressing transcriptional markers such as brain homeobox protein 1 (Dbx1) and sonic hedgehog 347 

(Shh) (Gelman et al., 2009).  348 

Finally, a small subpopulation of Empty Spiracles Homeobox 1-lineage (Emx1) cells 349 

originating in the cortical proliferative zones seem to migrate into the developing striatum during 350 

early prenatal development (Willaime-Morawek et al., 2006) and differentiate primarily into 351 

DARPP-32-positive SPNs and a small number of calretinin (CR) positive striatal interneurons 352 

(Cocas et al., 2009). In addition, a small population of SPNs has also been shown to arise from the 353 

CGE (Nery et al., 2002). 354 

It is largely unknown how the heterogeneity of embryonic progenitors based on their location 355 

of division (e.g. VZ and SVZ), morphology, and cell-cycle kinetics maps onto the transcriptional 356 

heterogeneity seen in the ganglionic eminences. This is important to understand, not only to further 357 

our understanding of progenitor diversity and lineage progression, but also because it might reveal a 358 

cohesive framework for labeling and tracking these populations of progenitors during 359 

embryogenesis, as well as following their development and neuronal progeny. Endeavors to map the 360 

genetic diversity within the ganglionic eminences at the single-cell level (Mayer et al., 2018; Mi et 361 

al., 2018) will further these efforts but is complicated due to the highly dynamic nature of their 362 

transcriptional profiles (Li et al., 2020). 363 

 364 
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From ganglionic eminences to postnatal striatum 365 

The LGE and MGE generate the majority of the neurons found in the postnatal striatum. From these 366 

embryonic domains, postmitotic cells must first migrate through the mantle zone, the superficial 367 

layer beyond the SVZ that contains neurons at various stages of migration and differentiation, before 368 

proceeding to the primordial striatum, where they integrate into functional striatal circuits. From the 369 

LGE, postmitotic cells migrate predominantly radially over a short distance, following a number of 370 

migratory cues towards the striatum (Bayer, 1984; Halliday & Cepko, 1992; Song & Harlan, 1994; 371 

de Carlos et al., 1996; Hamasaki et al., 2003; Newman et al., 2015; Kelly et al., 2018; Xu et al., 372 

2018; Chen et al., 2020) where they actively intermix (Tinterri et al., 2018). From the MGE, 373 

interneurons migrate longer distances to both the cortex and the striatum, again relying on 374 

differential expression of guidance molecules and receptors. For example, it is known that migration 375 

to cortical regions is guided by chemoattraction of Semaphorin ligands (Sema3A and SemaF), and 376 

Neuropilin receptors (Nrp1, Nrp2; (Marin & Rubenstein, 2001; Andrews et al., 2017) expressed in 377 

cortical-fated cells, whereas migration to the striatal region is regulated by Neuregulin 1 and ErbB4 378 

Receptor Tyrosine Kinase 4 signaling (Villar-Cervino et al., 2015). Any change in the expression of 379 

these transcription factors in postmitotic cells will redirect cells fated to a specific brain region 380 

(Villar-Cervino et al., 2015). The rapid downregulation of Nkx2.1 acts as a post-mitotic 381 

transcriptional switch (Figure 3B) in cortical-fated cells, as it transcriptionally inhibits cortical 382 

migration cues such as Nrp2 (Butt et al., 2008; Nobrega-Pereira et al., 2008). In contrast, striatal-383 

fated cells maintain Nkx2.1 expression into adulthood, preventing cortical migration (Villar-Cervino 384 

et al., 2015).  385 

The smaller populations of cells derived from the CGE, SNE and POA must also migrate to the 386 

striatum, however they follow different migratory routes, regulated by different genetic cues. Unlike 387 

the MGE and LGE, the CGE has two separate caudo-rostral migratory routes that cells use to invade 388 

the striatum, hippocampus, and cortex (Nery et al., 2002; Touzot et al., 2016). These cells regulate 389 

migration through specificity protein 8 (Sp8), Prox1, and CoupTF-I/TF-II signaling, which when 390 

perturbed, disrupts the ability of cells to successfully integrate into these diverse circuits (Touzot et 391 

al., 2016). In the next section, we explore how certain organizational aspects of striatum are 392 

governed by embryonic progenitor origin (Figure 2). 393 

 394 

Progenitors shaping striatal neuron positioning 395 

How is the position of a neuron in the striatum related to the embryonic progenitor it is derived 396 

from? It is known that early-born SPNs are located in the caudal parts of the striatum, while later-397 

born SPNs are found in more rostral parts (Newman et al., 2015; Kelly et al., 2018). The differential 398 

localization of these SPNs must, to some extent, be related to the populations of progenitors that are 399 

actively dividing during early and later stages of neurogenesis. As the proportion of IPs is greater at 400 

later stages of neurogenesis, this would suggest a larger contribution of certain IPs (e.g. BPs) to the 401 

generation of rostral SPNs (Pilz et al., 2013; Newman et al., 2015; Kelly et al., 2018). Both dSPNs 402 

and iSPNs are found intermingled throughout the striatum in a mosaic (Gangarossa et al., 2013) 403 

which, at least for the matrix compartment, seems to arise from active intermingling of newly born 404 

SPNs (Tinterri et al., 2018). This intermingling suggests that clonal clusters of SPNs might be spread 405 
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out more extensively throughout the striatum than clones found in the cortex (Yu et al., 2009; Brown 406 

et al., 2011; Shi et al., 2017), although this has not been systematically tested. Further positional 407 

information of SPNs in the striatum can be related to differential gene expression. For example, clear 408 

gradients of expression of the genes Crym and Cnr1 in SPNs can be observed from ventrolateral to 409 

dorsomedial striatum (Stanley et al., 2020). However, whether these gradients result from different 410 

developmental origins of the SPNs is currently unknown.  411 

Like SPNs, striatal interneurons do not distribute homogeneously within the striatum. Interneuron 412 

migration follows a ventral to dorsal gradient and interneurons sequentially populate the lateral and 413 

medial regions of the striatum (Chen et al., 2020). In particular, early-born interneurons such as the 414 

PV+ interneurons and CINs tend to accumulate in the lateral part of the striatum (Marin et al., 2000) 415 

(Figure 2B). Similarly, different types of CR+ interneurons do not distribute homogeneously; for 416 

example, those co-expressing the Ca2+ binding protein secretagogin and Sp8 are preferentially 417 

located in the rostral parts of the striatum, while other subsets of CR+ interneurons are located more 418 

uniformly (Garas et al., 2018). Interestingly, the expression of secretagogin also defines a 419 

subpopulation of PV+ interneurons found in more caudal parts of the striatum (Garas et al., 2016). A 420 

direct link between progenitor identity and the final location of MGE-derived cells is yet to be 421 

elucidated and the extent of spatial distribution of lineage-related interneurons is a current matter of 422 

debate. It has been proposed that lineage relationships do not determine interneuron allocation to 423 

particular regions (Mayer et al., 2015) and that clonally related interneurons can be widely dispersed 424 

(Harwell et al., 2015). Indeed, studies tracing clonally related neurons (predominantly after 425 

retrovirus labeling of progenitors embryonically) reveal that they disperse across the cortex, 426 

hippocampus, and striatum, with no apparent clustering (Reid & Walsh, 2002; Ciceri et al., 2013; 427 

Turrero Garcia et al., 2016) (Figure 2A; Table 1). However, other studies analyzing the same data 428 

set suggest that lineage (i.e., clonal or progenitor origin) does form clusters of neurons in the 429 

postnatal brain (Sultan et al., 2016). Further studies of clonally-related striatal interneurons from 430 

different embryonic regions and different progenitor cell types are likely necessary to unambiguously 431 

answer this question. 432 

 433 

Progenitors shaping striatal neurochemical compartments 434 

As mentioned in the Introduction, striatal dSPNs and iSPNs are intermingled within several 435 

functionally and anatomically distinct subregions. SPNs born in the early phases of neurogenesis 436 

become preferentially incorporated into striosomes/patches and the later-born SPNs settle in the 437 

surrounding matrix (Graybiel & Hickey, 1982; van der Kooy & Fishell, 1987; Song & Harlan, 1994; 438 

Mason et al., 2005; Newman et al., 2015). Whether there is further fine-scale organization within 439 

these compartments and to what extent this relates to the diversity of embryonic progenitors in the 440 

LGE was until recently largely unknown. Several recent studies have started to provide some key 441 

insights, however (Kelly et al., 2018; Tinterri et al., 2018; Matsushima & Graybiel, 2020) (Figure 442 

2). 443 

 444 

The first study used elegant fate-mapping experiments to provide insight into the roles of distinct 445 

types of progenitor cells in the LGE in generating SPNs fated to either the striosome/patch or matrix 446 
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compartments (Kelly et al., 2018). In this study, the authors used lineage-tracing analysis of 447 

embryonic progenitors (using tamoxifen-inducible NGF-inducible protein (Tis21)- and Ascl1-Cre 448 

recombinase mouse driver lines) and demonstrated that the LGE contains two types of IP, both 449 

derived from a RGC lineage. During early stages of neurogenesis (E9.5-12.5), apical IPs express the 450 

transcription factor Ascl1 and have limited capacity to produce striosomal SPNs. During later phases 451 

of neurogenesis (E13.5-18.5), basal IPs expressing both Ascl1 and Dlx1 produce matrix SPNs. It is 452 

possible that Ascl1, in conjunction with Gsx2, in SAPs inhibit neurogenesis and promotes initial 453 

proliferation of these large numbers of basal IPs (Roychoudhury et al., 2020). Both types of 454 

embryonic progenitor (apical and basal IPs) were shown to generate both dSPNs and iSPNs (Kelly et 455 

al., 2018).  456 

 457 

The second study, by Tinterri and colleagues, used a combination of transgenic animals and time-458 

lapse video imaging to provide insight into the seemingly uniform distribution of both dSPNs and 459 

iSPNs (Tinterri et al., 2018). Indeed, they were able to show that late-born iSPNs actively intermix 460 

with early-born dSPNs and that this, at least for the matrix compartments, depends on the expression 461 

of the transcription factor ebf1 in dSPNs (Tinterri et al., 2018).  462 

 463 

Lastly, using a combination of transgenic Dlx1-Cre recombinase mice under the control of a fast-464 

acting version of Tamoxifen (4-OHT), Matsushima and colleagues revealed that the 465 

striosomes/patches are formed through a center-surround rule, in which early-born SPNs are 466 

predominantly found in the center of the striosomes/patch compartments and surrounded by 467 

increasingly later-born SPNs (Matsushima & Graybiel, 2020). They found that this center-surround 468 

rule was universal and was employed in both anterior and posterior parts of the striatum, despite 469 

absolute differences in the birthdate of SPNs in these distinct parts. Moreover, they found that a key 470 

anatomical structure, the so-called striosome-dendron bouquet, forms during a very specific period of 471 

neurogenesis in the mouse (i.e. around E12-13; (Matsushima & Graybiel, 2020); Figure 2). 472 

 473 

Striatal interneurons also allocate differently between the striosome/patch and matrix compartments 474 

which affects how these local microcircuits of SPNs are modulated (Banghart et al., 2015; Friedman 475 

et al., 2015). Often found at higher density in the matrix, CINs, PV, NPY, and CR‐expressing 476 

interneurons are frequently located along striosomal borders in anatomically and functionally defined 477 

areas called “peri-striosomal boundaries” (Prager & Plotkin, 2019). CINs and SST+ interneurons 478 

located at the interface between striosomes and matrix have dendrites and axons that traverse across 479 

compartmental borders (Kubota & Kawaguchi, 1993; Bernacer et al., 2012; Brimblecombe & Cragg, 480 

2015; Matamales et al., 2016). Such interneurons might provide a functional bridge and modulate 481 

activity in both compartments (e.g. as demonstrated for the CINs (Crittenden et al., 2017)). Yet, the 482 

precise roles of many other striatal interneurons in functionally linking striosome/patch and matrix 483 

microcircuits and inter-compartmental communication remain poorly explored and form an 484 

interesting area for future study (Amemori et al., 2011). 485 

 486 

Progenitors shaping striatal long-range excitatory synaptic circuits 487 

How does embryonic progenitor origin shape the specificity of synaptic connections in the striatum? 488 

As mentioned in the Introduction, the striatum can be split into distinct functional domains 489 
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depending on anatomical subregion (e.g. DLS and DMS). These distinct anatomical domains contain 490 

a mixture of dSPNs and iSPNs that are thought to process and integrate excitatory inputs from 491 

distinct brain regions and also interact with each other via lateral inhibitory connections (Taverna et 492 

al., 2008; Planert et al., 2010; Chuhma et al., 2011; Burke et al., 2017; Krajeski et al., 2019). These 493 

anatomical domains are thought to be part of larger parallel functional pathways through the basal 494 

ganglia (Graybiel & Ragsdale, 1978; Alexander et al., 1986; Graybiel, 1990; Haber, 2008; Pan et al., 495 

2010; Oh et al., 2014; Hintiryan et al., 2016; Hunnicutt et al., 2016; McGregor et al., 2019; Lee et 496 

al., 2020). At a more local level, the clear segregation of these functional pathways is less clear. 497 

Indeed, individual SPNs exhibit considerable heterogeneity in their afferent connectivity patterns 498 

(Pan et al., 2010), and populations of SPNs with diverse excitatory inputs are intermingled in 499 

striatum (Oh et al., 2014; Hintiryan et al., 2016; Hunnicutt et al., 2016). Moreover, it has been 500 

shown that long-range glutamatergic synapses from different cortical regions can converge onto 501 

single SPNs (Reig & Silberberg, 2014) or diverge and form biased synaptic connections on either 502 

dSPNs or iSPNs (Wall et al., 2013; Johansson & Silberberg, 2020). Considering that young SPNs 503 

exhibit complex migratory pathways and intermix in striatum during development (Tinterri et al., 504 

2018) a question remains regarding how these precise striatal excitatory synaptic circuits develop 505 

and whether there is a role for distinct progenitor lineages. 506 

 507 

A recent study has provided the first evidence that synapse specificity, of at least corticostriatal 508 

afferents, can arise from the embryonic origin of SPNs (van Heusden et al., 2021). In this study the 509 

authors used in utero electroporation of a combination of constructs to label two active pools of 510 

embryonic progenitor in the VZ of the LGE at E15.5, based on the differential expression of the 511 

tubulin alpha1 (Tα1) promoter (Table 1). Interestingly, different tubulin isotypes can shape the 512 

properties of proliferating cells and might therefore provide a good target for future delineation of 513 

further progenitor types (Ramos et al., 2020). The van Heusden study combined a Tα1-Cre 514 

recombinase construct with a reporter construct incorporating a flexible excision (FLEx) CβA-FLEx 515 

cassette, so that Cre recombination permanently switches expression from the fluorescent protein 516 

TdTomato to GFP (Franco et al., 2012). Using this methodology, the authors showed that 517 

progenitors labeled with GFP (i.e. expressing Tα1) in the VZ had characteristic of both the SNP and 518 

SAP populations of LGE progenitors, including a rounded morphology during division, location of 519 

division, and fast cell-cycle kinetics (Pilz et al., 2013; Kelly et al., 2018; van Heusden et al., 2021). 520 

Measures of cell-cycle kinetics in this and previous studies (Stancik et al., 2010) were evaluated 521 

through labeling with the mitotic marker phosphohistone-3 (pH3) but new technology, with for 522 

example FUCCI (Sakaue-Sawano et al., 2008) will allow for more detailed insights (Table 1). 523 

Conversely, the progenitors that expressed TdTomato (i.e. not expressing Tα1 and likely consisting 524 

of a more heterogeneous population of progenitors) resembled the population of RGCs in that they 525 

had slower cell-cycle kinetics and frequently exhibited a radial morphology during division (Pilz et 526 

al., 2013; Kelly et al., 2018; van Heusden et al., 2021). As many SAPs derive from SNPs and hence 527 

are closely lineally related (Pilz et al., 2013), and as both divide in the apical aspects of the LGE 528 

proliferative zone, the GFP+ Tα1-expressing progenitors were collectively referred to as apical IPs 529 

(aIP) and the TdTomato+ non-Tα1-expressing progenitors simply as other progenitors (OPs) (Figure 530 

2A). This also conforms to nomenclature of similar cortical (Tyler & Haydar, 2013; Ellender et al., 531 

2019) and embryonic LGE progenitors (Kelly et al., 2018).  532 
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Using this approach, the authors followed the progeny of labeled cells and found that both progenitor 533 

pools predominantly generated striatal GABAergic SPNs; they referred to these cells as aIP and OP-534 

derived SPNs. Notably, both progenitor pools generated both dSPNs and iSPNs, which were 535 

intermingled, mostly in the DMS, and had similar properties (van Heusden et al., 2021). The authors 536 

explored whether aIP- and OP-derived SPNs differentially sample excitatory input coming from 537 

distinct cortical regions using local injections of AAV1-ChR2 in two different regions that send 538 

strong projections to DMS (Pan et al., 2010; Oh et al., 2014; Guo et al., 2015; Hunnicutt et al., 539 

2016), i.e. the medial prefrontal cortex (mPFC) (Laubach et al., 2018) and visual cortex (VC) 540 

(Khibnik et al., 2014); this allowed optogenetic activation of afferents and whole-cell patch-clamp 541 

recordings of aIP and OP-derived striatal SPNs. Strikingly, they found that embryonic progenitor 542 

origin conveyed significant biases in the strength of the long-range synaptic inputs coming from 543 

cortex, in that mPFC strongly innervated the aIP-derived SPNs, whereas the VC strongly innervated 544 

the OP-derived SPNs (Figure 2A). The van Heusden study, together with recent observations in 545 

cortex (Ellender et al., 2018; Ellender et al., 2019), suggest that a neuron’s lineage may be a key 546 

contributor to synapse specificity. In utero electroporation and other techniques such as Flash-Tag 547 

(Telley et al., 2016; Govindan et al., 2018) are powerful approaches to label progenitors and follow 548 

their progeny (Table 1) to further our understanding how progenitor identity relates to final function. 549 

Unlike for SPNs, no study has yet investigated the correlation between the identities of progenitor 550 

cells (transcriptional, morphological or otherwise) with the subsequent excitatory synaptic 551 

connectivity pattern of mature striatal interneurons in detail. However, it is possible to infer a link 552 

between the two, based on current knowledge of striatal development. Indeed, distinct classes of 553 

striatal interneurons receive different glutamatergic inputs along the medio-lateral axis. For example, 554 

CINs in the DMS receive more inputs from the pedunculopontine nucleus than the CINs in DLS 555 

(Assous et al., 2019), and similarly PV+ interneurons in the DMS, and not those in the DLS, receive 556 

glutamatergic inputs from the cingulate cortex (Monteiro et al., 2018). In the MGE, newly post-557 

mitotic, late-born CINs can be defined by the expression of the Gbx2 transcription factor (Chen et 558 

al., 2010), which might be related to their preferred pedunculopontine innervation in the DMS CINs. 559 

However, the extent to which the identity of the newly formed post-mitotic cell is controlled by the 560 

transcriptional profile of the underlying progenitor is only beginning to be understood; see for 561 

example (Mi et al., 2018) Figure 2). 562 

 563 

 564 

Searching for answers in the cortex 565 

Many questions remain regarding the role of embryonic progenitors in shaping postnatal striatal 566 

neuronal identity and circuits. For example: How do specific progenitor-derived cells map onto 567 

modern transcriptomic classifications of striatal neurons? What is the contribution of progenitor 568 

types other than the ones studied so far? We will now discuss some of these outstanding questions in 569 

light of the relevant literature, mainly from studies in the cortex, and discuss how these may guide 570 

future research in the striatum. 571 

 572 
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What is the contribution of other embryonic progenitors to the 573 

striatum? 574 

As discussed above, the LGE contains a heterogeneous mix of progenitor types including those that 575 

divide in the apical aspects of the LGE (e.g. RGC and aIP) and those that divide in the basal aspects 576 

of the LGE (e.g. bRGC and BP) (Olsson et al., 1998; Stenman et al., 2003; Pilz et al., 2013; Kelly et 577 

al., 2018; van Heusden et al., 2021). Although a recent study has started to provide insight into the 578 

contribution of the apically dividing progenitors to the striatal cellular and circuit organization (van 579 

Heusden et al., 2021), much less is known about the contribution of other more basally dividing 580 

progenitors. It has been proposed that the number and relative proportion of basal progenitors are 581 

responsible for the extensive growth of the neocortex in humans (LaMonica et al., 2013; Florio & 582 

Huttner, 2014; Lewitus et al., 2014) and have underpinned an evolutionary step driving our unique 583 

cognitive abilities. However, bIPs may not solely exist to increase brain size, but instead offer 584 

alternative contributions to the development of cortical as well as striatal circuits.  585 

In the striatum, the striosome and matrix compartments differ substantially in size, but their 586 

approximate 1:4 size ratio is conserved across many mammalian species (Brimblecombe & Cragg, 587 

2017). The findings that distinct IP types with different neurogenic capacities are fate-restricted to 588 

generate SPNs destined for either striosome or matrix compartments provide a plausible explanation 589 

for this observation (Kelly et al., 2018). Indeed, Kelly and colleagues demonstrated that larger 590 

numbers of bIPs are generated from RGCs during a long, late phase in embryogenesis and that 591 

individual bIPs undergo more rounds of transitory amplification compared to early aIPs. This results 592 

in early aIPs generating many of the striosome SPNs, and later bIPs generating many of the matrix 593 

SPNs (Kelly et al., 2018); Figure 2A and B). Moreover, these authors demonstrated that the progeny 594 

of distinct types of bIPs at various stages of embryonic development inhabit distinct matrix 595 

compartments (Kelly et al., 2018) suggesting that bIP diversity can also inform the formation of 596 

distinct regions in striatum. What further properties, if any, are conveyed by bIPs is currently largely 597 

unknown.  598 

In cortex in utero electroporation of T-box brain protein 2 (Tbr2) Cre-recombinase constructs and 599 

fate mapping of their progeny made it possible to show that the cortical progeny of Tbr2+ bIPs had 600 

distinctive electrical and morphological properties compared with neurons derived from other 601 

progenitors (Tyler et al., 2015). It might be possible to label bIPs in the LGE using similar 602 

approaches, as Tbr2 is embryonically expressed in the LGE (Kimura et al., 1999). Considering that 603 

the MGE gives rise to both striatal and cortical interneurons, it is possible that the mechanisms 604 

demonstrated for cortical neurogenesis can be extended to the striatum.  605 

Interestingly, bIPs have been shown to selectively contribute to interneuron diversity (Petros et al., 606 

2015). Indeed, apical progenitors appear to preferentially generate SST+ interneurons, whereas bIPs 607 

contribute to PV+ interneurons, confirming a distinct role for bIPs in the MGE (Figure 2A). 608 

Especially during later stages of embryonic development, bIPs become the primary proliferative cells 609 

in both ganglionic eminences (Smart, 1976) and it will interesting to explore whether they might 610 

convey further characteristics related to cell identity, synaptic connectivity, and/or intrinsic electrical 611 

properties.  612 
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Do diverse embryonic progenitor types map onto defined postnatal 613 

neuron populations? 614 

The advent of single-cell RNA sequencing technology (sc-RNAseq) has provided great insight into 615 

the vast diversity of postnatal neurons in the brain, including the striatum (Table 1). Indeed, this has 616 

provided evidence for SPN types beyond the classical distinction of dSPNs and iSPNs (Saunders et 617 

al., 2018; Martin et al., 2019), additional subdivisions within the dSPNs or iSPNs (Gokce et al., 618 

2016; Zeisel et al., 2018; Stanley et al., 2020), and gradients of transcriptional heterogeneity 619 

correlating with SPN position in the striatum (Stanley et al., 2020). Whether and to what extent this 620 

great diversity of SPN types maps onto distinct embryonic progenitor pools is largely unknown. It 621 

has been shown that different progenitor pools in LGE, such as aIP and OP (van Heusden et al., 622 

2021) and bIP (Kelly et al., 2018), can each generate both dSPNs and iSPNs. It seems that dSPN and 623 

iSPN share common progenitors (i.e. both AP and BP) and that lineage commitment is established 624 

during the postmitotic transition as shown in humans as well (Bocchi et al., 2021). This suggests that 625 

factors beyond embryonic pool of origin likely contribute to the generation of SPN transcriptional 626 

subtypes (Tepper et al., 1998; Lobo et al., 2006; Franco et al., 2012; Kelly et al., 2018; Anderson et 627 

al., 2020; Sharma et al., 2020). Many other factors could act on progenitors and young neurons, 628 

including epigenetic modifications (Yoon et al., 2018; Zahr et al., 2018; Telley et al., 2019), factors 629 

related to migration (Lim et al., 2018), or further differential transcription factor expression (Lu et 630 

al., 2014; Zhang et al., 2016; Bocchi et al., 2021), to prime or post-transcriptionally regulate protein 631 

expression (Nowakowski et al., 2013; Zahr et al., 2018; Li et al., 2020). 632 

Despite the above findings, there is some early evidence linking transcriptionally defined cortical 633 

neurons to defined populations of embryonic progenitor (Ellender et al., 2019). In this study the 634 

authors used a modified Patch-seq approach (Munoz-Manchado et al., 2018; Mahfooz & Ellender, 635 

2021) (Table 1) to transcriptionally map aIP- and OP-progenitor-derived cortical neurons to a 636 

published large-scale sc-RNAseq neuronal classification of cortex (Tasic et al., 2018). They found 637 

that the cortical aIP progenitors, as defined by the selective expression of the Tα1 promoter during 638 

early development, were more restricted in the types of cortical neurons they generated than OP 639 

progenitors, which consisted of a more heterogeneous population of progenitors (Ellender et al., 640 

2019). This restricted output from aIPs supports the idea that intermediate progenitors emerged to 641 

increase the representation of particular postmitotic cell types (Martinez-Cerdeno et al., 2006; Tyler 642 

& Haydar, 2013; Taverna et al., 2014; Guillamon-Vivancos et al., 2018) and also supports the idea 643 

that VZ neuronal progenitors can exhibit different degrees of lineage restriction (Franco et al., 2012; 644 

Gil-Sanz et al., 2015; Llorca et al., 2019). At the same time, as aIPs are derived from RGCs, these 645 

findings are compatible with a general model in which a single neuronal progenitor cell type 646 

ultimately gives rise to the full complement of excitatory cortical neuronal cell types (Franco & 647 

Muller, 2013; Taverna et al., 2014). Lastly, the data indicates that multiple excitatory progenitor 648 

pools, and intermediate progenitor pools in particular, have not simply evolved to expand brain 649 

structure volume, but can also contribute to cell diversity.  650 

 651 

How progenitor cell diversity in the MGE shapes interneuron transcriptional diversity in the mature 652 

brain has been a longstanding question in neural development. Of particular interest is whether a 653 

single MGE-derived progenitor can generate both striatal and cortical interneurons (Reid et al., 1995; 654 
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Reid & Walsh, 2002). As previously described, postmitotic transcriptional switches such as Nkx2.1 655 

can determine cortical versus striatal fate (Villar-Cervino et al., 2015); but it is not known whether 656 

this is predetermined at a progenitor level. Currently, two distinct models have been suggested. In 657 

one model, across its proliferative life span, a single progenitor can generate both cortical and 658 

striatal-fated neurons which, when mature, can have vastly different functional properties 659 

(McConnell & Kaznowski, 1991; Desai & McConnell, 2000; Llorca et al., 2019). Alternatively, a 660 

single progenitor may be fate-locked to the generation of either striatal or cortical cells. In this latter 661 

paradigm, progenitor cell diversity directly drives neuron heterogeneity (Franco et al., 2012; Garcia-662 

Moreno & Molnar, 2015) (Figure 3). Both possible mechanisms raise questions. For example, if 663 

cortical and striatal interneurons are derived from different progenitors, are these progenitors 664 

spatially segregated within the VZ of the MGE (Flames et al., 2007; Mi et al., 2018)? Or are they 665 

randomly distributed, with a stochastic system of probabilistic decisions delineating striatal from 666 

cortical MGE-derived interneurons, as has been shown for excitatory neurons in the cortex (Llorca et 667 

al., 2019; Klingler & Jabaudon, 2020). Alternatively, specific molecules could separate progenitors 668 

giving rise to both striatal and cortical interneurons. For example, the ETV1/Er81 transcription factor 669 

is expressed from E10.5 in the MGE and segregates subtypes of progenitor cells in the VZ and SVZ. 670 

It has been shown to play a critical role during development, impacting several properties, including 671 

neuronal identity (Flames et al., 2007; Doitsidou et al., 2013) and excitability of cortical (Dehorter et 672 

al., 2015), as well as striatal interneurons (Ahmed et al., 2021). However, how the ETV1/Er81 673 

transcription factor relates to distinct progenitor cells discussed so far is largely unknown. It would 674 

be interesting to further investigate whether this specific molecule dictates MGE-derived cell fate 675 

and participates to the emergence of functional diversity within the striatum. 676 

 677 

The question of transcriptional identity is closely related to the more general question: To what 678 

extent is embryonic progenitor diversity related to neuronal diversity (Figure 3)? Because cortical 679 

development has been studied to a greater extent than that of other brain regions (including striatum), 680 

it may provide some insight into this question. Recently, it was shown that the progenitors that give 681 

rise to cortical pyramidal neurons follow a stochastic system of differentiation, wherein their random 682 

exposure to different developmental cues differentiates subsequent cellular properties (Llorca et al., 683 

2019; Klingler & Jabaudon, 2020). Indeed stochastic modeling could predict the clonal size, spatial 684 

distribution, and volumetric heterogeneity of cortical pyramidal neurons. This model provides an 685 

explanation for how diverse progeny can arise from a relatively homogenous group of progenitors 686 

(Klingler & Jabaudon, 2020). However, a completely homogenous population of progenitors that 687 

followed a stochastic mechanism did not fully explain all experimental observations. Indeed the 688 

authors had to trace the progeny from two distinct progenitors, which could then accurately predict 689 

the laminar position and their clonal size. This implies that even under a stochastic system, having 690 

multiple types of progenitor cells in the embryonic brain is required to generate the required cellular 691 

diversity of the postnatal brain (Llorca et al., 2019). Longitudinal scRNA-seq studies encompassing 692 

extended periods of perinatal development, as recently achieved for cortical structures, (Di Bella et 693 

al., 2021; La Manno et al., 2021), will allow for deeper probing of these questions. 694 

 695 

What controls the local connectivity among striatal neurons? 696 
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We previously discussed how embryonic progenitor origin generates biases in the long-range 697 

excitatory connectivity from different cortical regions onto SPNs and could contribute to the 698 

generation of separate functional striatal pathways. Within the striatum, the SPNs (and associated 699 

interneurons) form local inhibitory synapses with which they regulate each other’s activity; these 700 

have also been shown to be selective and biased. For example, iSPNs form more frequent and 701 

stronger synaptic connections than dSPNs (Taverna et al., 2008; Planert et al., 2010; Chuhma et al., 702 

2011; Cepeda et al., 2013; Burke et al., 2017; Krajeski et al., 2019) and FS interneurons make more 703 

frequent connections onto dSPNs than onto iSPNs (Gittis et al., 2010; Planert et al., 2010). What 704 

rules govern these observed biases in local inhibitory connectivity? Is there evidence for involvement 705 

of progenitors?  706 

 707 

A recent study investigated whether embryonic progenitor origin affected the strength of local 708 

inhibitory connections among SPNs and found no evidence (van Heusden et al., 2021). In this study, 709 

an optogenetic circuit mapping approach was used to study the strength of inhibitory synaptic 710 

connections from aIP-derived SPNs to either aIP-derived or OP-derived SPNs and found no 711 

difference in their strength. Instead of progenitor origin the birthdate of SPNs influenced the strength 712 

of connections, in that SPNs tended to form strong inhibitory synaptic connections with SPNs born 713 

during similar stages of neurogenesis, over and above SPNs born at other developmental stages (van 714 

Heusden et al., 2021) (Figure 2B). This is in contrast to recent findings in cortex where embryonic 715 

progenitor origin was shown to impact the incidence of local synaptic connectivity among the 716 

excitatory neurons in both layer 4 and layer 2/3 of the somatosensory cortex (Ellender et al., 2019). 717 

Here, the authors demonstrated that neurons tended to make preferential synaptic connections with 718 

other neurons derived from a different embryonic progenitor pool (Ellender et al., 2019).  719 

 720 

The results in striatum described above are a first indication of increased interactions amongst SPNs 721 

with similar birthdates, but they do not provide insight into the emergence of preferred connectivity 722 

between dSPNs and iSPNs. It is known that the preferred connectivity patterns between SPNs 723 

emerge early in postnatal development (Krajeski et al., 2019), suggesting they could result from 724 

synaptic plasticity driven by early neural activity (Cinotti & Humphries, 2021; Lopez-Huerta et al., 725 

2021) and neuromodulation (Goffin et al., 2010). Regarding striatal interneurons, a recent study 726 

revealed that in the absence of the Er81 transcription factor, striatal CINs shifted towards less PV-727 

CIN and CIN-CIN synaptic connections (Ahmed et al., 2021). Considering the MGE contains a 728 

population of progenitors expressing Er81, it is possible that the cholinergic interneurons derived 729 

from these progenitors are fated to a specific connectivity pattern.  730 

 731 

  732 

Embryonic progenitors and striatal pathology 733 

Understanding the role of embryonic progenitors in relation to striatal development has the potential 734 

to further our understanding of striatal dysfunction in both neurodevelopmental and 735 

neurodegenerative disorders. Indeed, recent evidence suggests that defects in the division and 736 

differentiation of these progenitors are associated with diseases such as Huntington’s disease and 737 

Autism spectrum disorder.  738 

 739 
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The earliest symptoms of Huntington's disease (HD) are often subtle, including problems with mood 740 

or cognition; these are followed by a general lack of coordination and an unsteady gait. As the 741 

disease advances, uncoordinated, involuntary body movements worsen. The cause of HD is typically 742 

genetic: a mutation in the huntingtin gene (HTT) is inherited from an affected parent (Barnat et al., 743 

2020) or arises from de novo mutations. The resulting mutant protein (mHtt) leads to the eventual 744 

death of striatal cells, particularly affecting the iSPNs (Zheng & Kozloski, 2017). Recent findings 745 

have suggested that mHtt can affect progenitor cells during embryonic periods (Wiatr et al., 2018; 746 

Barnat et al., 2020). Indeed, using a HD mouse model, it was shown that mHtt affects levels of 747 

neurogenesis and can result in increased numbers of embryonic progenitors (Lorincz & Zawistowski, 748 

2009), something that also has been observed in post-mortem samples from humans with HD (Curtis 749 

et al., 2003). More recently, it was established that these mutations also severely affect the 750 

developing cortex, causing mislocalization of both mHtt and junctional complex proteins, defects in 751 

embryonic progenitor cell polarity and differentiation, abnormal ciliogenesis, and changes in mitosis 752 

and cell-cycle progression, in both humans and mice (Barnat et al., 2020). In addition, there are 753 

suggestions that mature striosomes exhibit increased vulnerability in HD (Hedreen & Folstein, 1995; 754 

Friedman et al., 2020); given that striosomal SPNs are generated mainly from aIP during early stages 755 

of neurogenesis (Kelly et al., 2018), the selective impact of mutations in HTT in this population of 756 

progenitors could be interesting to study and to test novel treatments (Lin et al., 2015). Together 757 

these recent findings suggest that HD has a substantial neurodevelopmental component and is not 758 

solely a neurodegenerative disorder. See also recent Review on altered striatal development in HD 759 

(Lebouc et al., 2020). 760 

 761 

Autism spectrum disorder (ASD) is a group of neurodevelopmental pathologies that cause significant 762 

social and communication challenges and restrictive/repetitive behaviors. Evidence from human 763 

post-mortem brain studies (Cheffer et al., 2020) and human-derived iPSCs identify early embryonic 764 

development as a critical period for this disorder (Cheffer et al., 2020; Griesi-Oliveira et al., 2020; 765 

Hohmann et al., 2020). Stem cells derived from people with autism show higher rates of proliferation 766 

(Cheffer et al., 2020; Adhya et al., 2021), reduced differentiation potential, and a different genetic 767 

profile than those from control donors (Grunwald et al., 2019; Shen et al., 2019; Wang et al., 2020; 768 

Adhya et al., 2021). Recent whole-exome sequencing studies of ASD risk genes have shed light on 769 

the critical importance of interneurons in ASD etiology (Satterstrom et al., 2020). For example, 770 

striatal interneurons show reduced expression of postmitotic neural differentiation factors (Close et 771 

al., 2012), including SATB Homeobox 1 (SatB1), which regulates the survival of SST+ and PV+ 772 

post-mitotic interneurons (Close et al., 2012), and Ephrin type-B receptor 1 (Ephb1), a regulator of 773 

striatal and cortical interneuron migration (Villar-Cervino et al., 2015). Although interneuron 774 

numbers might normalize during development, the early alterations can lead to long-lasting changes 775 

in neuronal circuit function that affect behavior (Magno et al., 2021). Further work is necessary to 776 

directly attribute early alterations in neural progenitor cells and neural circuit formation to the 777 

disease mechanisms in ASD. 778 

 779 

These studies highlight a clear role for embryonic progenitors in two different disorders and suggest 780 

further research is needed on the impact of the altered behavior of progenitors on the developing 781 

brain. One opportunity is the growing use of in vitro models to further dissect disease mechanism 782 

and etiology. Despite the limitations (e.g., reproducibility, scalability and long-term survival; 783 
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(Quesnel-Vallieres et al., 2019; Wang et al., 2020; Pintacuda et al., 2021) the “disease-in-a-dish” 784 

approach allows for precisely timed analyses and offers an opportunity to further probe the cellular 785 

and molecular alterations in brain development in health and disease (Chan et al., 2020). Stem-cell-786 

derived model systems, such as three-dimensional organoids (Di Lullo & Kriegstein, 2017; Pollen et 787 

al., 2019), air-liquid interface cerebral organoids from mouse or human iPSC (Giandomenico et al., 788 

2019), and combining different organoids in ‘assembloids’ (Miura et al., 2020) have opened new 789 

experimental avenues for investigating aspects of development and pathology of the human brain 790 

(Table 1). Notably, determining how brain cells derived from diverse human genetic backgrounds 791 

respond to specific drugs might ultimately allow for personalized medicine approaches for disorders 792 

such as HD and ASD (Mariani et al., 2015; Maussion et al., 2019; Wang et al., 2020). 793 

 794 

Progenitors supporting neurological restoration 795 

As outlined above, remarkable progress has been made in our understanding of progenitors, stem 796 

cells, and their progeny, allowing us to shape progenitor cell development to generate many 797 

functional mature neural cell types (Arber et al., 2015). A major objective is to reproduce the 798 

maturation steps of brain cells and provide new insights into the pathophysiology of various 799 

disorders in vitro (Tyson & Anderson, 2014; Mariani et al., 2015; Noakes et al., 2019; Comella-800 

Bolla et al., 2020; Wang et al., 2020). A further objective is to harness this knowledge and develop 801 

new cell-based treatment options, including cell transplantation, which would allow for restoration 802 

(or modulation) of neural circuit defects in brain disorders. Below we highlight a few recent papers 803 

and would like to refer also this recent Review (Bjorklund & Parmar, 2020) 804 

 805 

So far, transplantation studies of embryonic progenitor cells in animals and humans have generated 806 

some positive results with regard to the ability of delivering cells that become functionally integrated 807 

into the postnatal brain. For example, it has been shown that isolated E12.5-13.5 or E14.5 MGE 808 

progenitor cells can differentiate into interneurons and integrate into early postnatal circuits 809 

(Alvarez-Dolado et al., 2006; Martinez-Cerdeno et al., 2010). Moreover, transplantation of 810 

embryonic progenitor cells into the postnatal brain has been successfully trialed in pre-clinical 811 

models as potential replacement strategies for the treatment of disorders such as Parkinson’s disease 812 

and epilepsy (Martinez-Cerdeno et al., 2010; Hunt & Baraban, 2015; Upadhya et al., 2019; Doi et 813 

al., 2020; Guo et al., 2021). However, accurate programming of induced cells into specific 814 

progenitors, striatal neurons, or mixtures of neurons (Reddington et al., 2014), is likely critical when 815 

considering cell transplantation as a possible treatment option for HD or ASD and other disorders. 816 

 817 

Directing human stem cells into specific neuronal types is complex and will require accurate 818 

differentiation protocols that mimic endogenous neuronal development, integrating aspects of cell 819 

maturation (e.g. morphology and electrical properties) and circuit formation (Figure 3C). Indeed, this 820 

will also likely require consideration of the distinct transcriptional programs and developmental 821 

sequential events that guide newborn neurons (Telley et al., 2016; Vitali et al., 2018). Recent work 822 

has started to examine the properties of human pluripotent stem cells (hPSC) grafted into the 823 

postnatal mouse (Comella-Bolla et al., 2020) and rat (Noakes et al., 2019) striatum. The cells 824 
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adopted cellular profiles similar to those found in the human striatum (Table 1). In the latter study 825 

CR+ interneurons were the predominant cells; CINs, while present within the graft, were absent in 826 

the in vitro culture; and SST+ and PV+ cells, originally absent in the graft, were detected in the 827 

culture. Potential reasons for the differences in cellular composition between the graft and cell 828 

culture could be a subtype-dependent survival bias or environment-driven redirection of interneuron 829 

fate, creating a shift in the subtype composition to match the region where the cells were grafted 830 

(Quattrocolo et al., 2017). Further elucidation of the survival and subtype composition achieved by 831 

the grafts is necessary to shed light on the relative influence of intrinsic and extrinsic cues on 832 

neuronal fate. The degree of fate commitment present at the progenitor stage could potentially be 833 

tested by transplanting hPSC-derived progenitors from a specific ganglionic eminence into the 834 

neonatal striatum using neuron type-specific hPSC reporter lines or reprogramming of endogenous 835 

cells into neurons (Weinberg et al., 2017). Recent sequencing of mouse (Mayer et al., 2018; Mi et 836 

al., 2018; Loo et al., 2019) and human striatal progenitors and young neurons (Bocchi et al., 2021) 837 

have provided insight into their lineages and can facilitate the development and the efficacy of cell 838 

replacement, showing great potential to improve therapeutic avenues. 839 

 840 

 841 

Conclusions 842 

The postnatal striatum is a highly complex brain structure with multiple levels of organization, some 843 

aspects of which, as outlined in this Review, are related to embryonic progenitor cell origin. Here, 844 

we highlighted recent studies delineating the crucial importance of progenitor origin in shaping the 845 

spatial position, cellular identity, and synaptic connectivity of both striatal spiny projection neurons 846 

and interneurons during development. Understanding these novel roles of diverse embryonic 847 

progenitors in shaping striatal development provides a useful framework through which to view the 848 

vast complexity of neuronal circuits in the postnatal brain, and it can help shape future research 849 

directions and the development of cell-based therapies. 850 

 851 

  852 
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Figure legends 1942 

 1943 

Figure 1: Striatal cells arise from diverse progenitor populations in the ganglionic eminences 1944 

and neighboring structures. (A) The embryonic domains that give rise to striatal-fated cells include 1945 

the lateral ganglionic eminence (LGE), medial ganglionic eminence (MGE), caudal ganglionic 1946 

eminence (CGE), preoptic area (POA) and septal neuroepithelium (SNE). Further gradients can be 1947 

found within the eminences e.g. dorsal LGE is a major source of OB interneurons and ventral LGE 1948 

gives rise to SPNs, and SST interneurons are preferentially derived from dorsal MGE, while PV 1949 

interneurons are preferentially derived from ventral MGE. (B) Left: Embryonic progenitors can be 1950 

segregated into different groups: the apical progenitors of the VZ, including radial glial cells, 1951 

subapical progenitors, and short neural precursors; and the basal progenitors of the SVZ, which can 1952 

be separated into basal radial glia (bRGC), and other intermediate progenitors (IP) (e.g. basal 1953 

progenitors). Right: The arrows represent the possible outcomes of progenitor division. (C) Cells 1954 

undergo broadly conserved steps of maturation, including proliferation, differentiation, and 1955 

migration followed by refinement of circuitry through synaptogenesis and controlled apoptosis. (D) 1956 

The main excitatory inputs to striatum come from cortex and thalamus, which innervate both the 1957 

striatal projection neurons (SPNs, left) and interneurons (right). SPNs include both the direct-1958 

pathway dopamine D1-receptor-expressing SPNs (dSPNs; in red) and the indirect-pathway dopamine 1959 

D2-receptor-expressing SPN types (iSPN; in red), which send axonal projections to downstream 1960 

basal ganglia nuclei including, respectively, the substantia nigra pars reticulata (SNr)/internal globus 1961 

pallidus (GPi) and external globus pallidus (GPe). The local populations of diverse interneurons are 1962 

integrated within the striatum and can modulate the activity of SPNs. PV: Parvalbumin, TH: 1963 

Tyrosine Hydroxylase, SST: Somatostatin, CR: Calretinin, VIP: Vasoactive Intestinal Polypeptide, 1964 

ChAT: Choline Acetyltransferase. 1965 

 1966 

Figure 2: Embryonic progenitor origin controls many aspects of mature striatal neuron 1967 

position and connectivity. (A) (i) LGE apical IPs (aIPs) and basal IPs (bIPs) generate SPNs fated to 1968 

the striosomes (aIPSs-SPN) and matrix (bIPMs-SPN) compartments of the adult striatum. SPNs fated 1969 

for the annular region (bIPAs-SPN) are generated later in development from specific bIPs expressing 1970 

the transcription factor Dlx1. (ii) IPs expressing tubulin α1 (Tα1) in the LGE generate SPNs that 1971 

receive stronger innervation from the medial prefrontal cortex (mPFC), whereas other progenitors 1972 

(OP), which do not express Tα1, generate SPNs that receive stronger innervation from visual cortex 1973 

afferents. (iii) The time of birth of SPNs in the LGE determines their spatial arrangement within 1974 

striosomes, and consequently facilitates the formation of different long-range synaptic connections 1975 

with the substantia nigra (SN). (iv) It is debated whether lineage and/or clonal relationships govern 1976 

the spatial distribution of MGE-derived neurons. (v) The transcriptional identity of mature MGE-1977 

derived interneurons is reflected in early postmitotic cells (PMC), however whether the underlying 1978 

progenitor cells predetermine this is not known. (vi) Apical neurogenesis in the MGE biases towards 1979 

the generation of somatostatin (SST) interneurons, whereas basal neurogenesis preferentially 1980 

generates parvalbumin (PV) interneurons. Unlike the SPNs, it is not known whether this bias extends 1981 

to the spatial distribution between striosomes and matrix neurochemical compartments in the 1982 

striatum. (B) For both MGE and LGE derived neurons, the time of birth appears to be a critical factor 1983 

that facilitates the generation of a neuron’s chemical identity and spatial distribution.  1984 

 1985 

Figure 3: The relationship between diversity in embryonic progenitors and diversity in 1986 

postnatal neurons. (A) Different models have been proposed to explain the neuronal diversity 1987 

observed in the postnatal brain. In the deterministic model (left), different progenitor pools (different 1988 

colors) (Villar-Cervino et al., 2015) generate neurons that have specific characteristics (e.g. biased 1989 

synaptic inputs, transcriptional identity, and/or spatial positioning). In the stochastic model (middle), 1990 



 48 

these characteristics are mainly attained shortly after birth through a seemingly random process 1991 

(Llorca et al., 2019; Klingler & Jabaudon, 2020). These two models could also co-exist for distinct 1992 

progenitor populations, and they are not mutually exclusive: a mixed model (right) is possible. (B) It 1993 

is possible that some developmental cues are irreversible, permanently shifting the outcome of a 1994 

stochastic system. In this example, the dark line represents a restriction within the stochastic system: 1995 

after a cell down-regulates the transcription factor Nkx2.1, it becomes fated for the cortex instead of 1996 

striatum. The result cannot be reversed, regardless of intrinsic or extrinsic cues. (C) Top: To 1997 

effectively restore neural physiology with cell transplants in the postnatal brain, multiple factors 1998 

must be considered, including transplanting sufficient number of cells with appropriate 1999 

transcriptional identities and intrinsic properties (Noakes et al., 2019). Bottom: Because 2000 

neurodevelopmental pathologies can arise from dysfunctional progenitors, modulation of existing 2001 

progenitors in situ or transplanting progenitors prenatally might restore a healthy developmental 2002 

trajectory. This will also necessitate the generation of progenitors with appropriate cell-cycle 2003 

dynamics (Wang et al., 2020), transcriptional states (Satterstrom et al., 2020) and other intrinsic 2004 

properties, including resting membrane potential (RMP) (Vitali et al., 2018) Both adult and 2005 

embryonic transplants would require transplanting cells at the correct time within a developmental or 2006 

disease process, as well as in the correct location in the brain. 2007 

 2008 

  2009 
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TABLE 1: Recent technological advances in embryonic progenitor research. 

METHODS KEY FINDINGS and REFERENCES 

ANALYSIS OF GENE EXPRESSION 

Single-cell RNA sequencing (sc-RNAseq)  

Quantification of RNA transcripts with single-cell 

resolution 

• Uncovered new MGE-derived neuronal progenitor cell (NPC) subtypes and 

transcriptionally defined cortical interneurons (Tasic et al., 2016; Mayer et al., 

2018; Mi et al., 2018; Saunders et al., 2018; Tasic et al., 2018) 

• AP and BP populations divide into two sub-types (Chen et al., 2017) 

• Further subdivisions within dSPN and iSPN and additional striatal SPN types 

(Zeisel et al., 2018) (Gokce et al., 2016; Saunders et al., 2018; Martin et al., 2019) 

• Uncovered gradients of transcriptional heterogeneity correlating with positional 

information of SPNs (Stanley et al., 2020) 

• Whole-exome sequencing identifying ASD risk genes and the critical importance 

of interneurons within ASD etiology (Satterstrom et al., 2020) 

• Sc-RNAseq of human striatal progenitors and young neurons (Bocchi et al., 2021) 

Patch-Seq 

Investigating transcriptional profiles and 

physiological properties of single cells 

 

• Reveals seven main classes of striatal SPNs and interneurons with gradients of gene 

expression that vary from cortical and hippocampal interneurons (Munoz-

Manchado et al., 2018) 

• Transcriptional classification of aIP and OP-progenitor derived cortical neurons 

(Ellender et al., 2019) 

Spatial Transcriptomics 

Visualizing RNA transcripts in specific areas 

with spatial resolution (50 μm) 

• Spatial transcriptomics enables to generate a whole-brain atlas and uncovers new 

spatial domains in the striatum (Lein et al., 2017; Ortiz et al., 2020) 

MERFISH  

Visualizing RNA transcripts with subcellular 

compartmentalization 

• Multiplexed Error-Robust FISH (MERFISH) enables spatial RNA profiling of 

individual cells in different subcellular compartments and in transcriptionally 

distinct cell-cycle phases. This technique is useful to study cell fate and regulation 

of gene expression (Xia et al., 2019) 

LINEAGE TRACING AND CELL FATE ASSAYS 

MADM  

Mosaic Analysis with Double Markers provides 

genetic dissection of intrinsic gene function 

• This genetic mosaic strategy enables to sparsely alter single cells whilst 

maintaining a “normal” local microenvironment. This study showed that Lgl1 is a 

critical regulatory element for embryonic cortical neurogenesis and cell-

autonomous control of RGC-mediated glia genesis and postnatal NPC (Beattie et 

al., 2017) 

FlashTag  

Label, track and isolate isochronic cohorts of 

newborn cells in the CNS 

• This powerful technique, first described in the neocortex, can be used in many 

brain regions to birthdate and isolate any type of progenitor in contact with the VZ 

and to follow cell migration of newly born neuron (Telley et al., 2016; Govindan et 

al., 2018) 

In utero electroporation 

Label embryonic progenitors and track their 

progeny through prenatal and postnatal periods 

• In utero electroporation of constructs driving recombinase systems (e.g. Cre) under 

the control of promoter sequences specific for certain progenitors in combination 

with reporter constructs allow for labeling of progenitors and progeny. Employed 

to label apical IPs in striatal and cortical proliferative regions (Gal et al., 2006; 

Stancik et al., 2010; Tyler & Haydar, 2013; Ellender et al., 2019; van Heusden et 

al., 2021), and basal IP cells and/or bRGC in cortical proliferative regions (Tyler et 

al., 2015; Li et al., 2020) 
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Transplantation Assays  

Human Pluripotent Stem Cell-Derived Neurons 

• In this study, the authors reveal a differentiation protocol to direct human 

pluripotent stem cells (hPSCs) to mature neurons in 37 days in vitro (Comella-

Bolla et al., 2020). Transplantation experiments show that NPCs survive and 

differentiate (for at least 3-months) in the mouse striatum (Martinez-Cerdeno et al., 

2010; Noakes et al., 2019; Comella-Bolla et al., 2020)  

FUCCI 

Fluorescence Ubiquitination Cell-Cycle Indicator 

analyzes the temporal dynamics of cell-cycle 

progression (live cell imaging) 

• Genetically encoded fluorescent probes to visualize cell-cycle transition from G1 to 

S phase (individual G1 phase nuclei in red and S/G2/M phases in green) (Sakaue-

Sawano et al., 2008)  

Clonal relationships  

Dispersion of clonally related interneurons 

• Study the clonal or progenitor origin that influences the spatial distribution of 

mature interneurons (Ciceri et al., 2013; Harwell et al., 2015; Mayer et al., 2015; 

Sultan et al., 2016; Turrero Garcia et al., 2016) 

CONNECTIVITY AND CELL ACTIVITY 

Viral transfections  

RV: Retrograde monosynaptic tracing 

AAV: Labeling of distinct neuronal subtypes 

• Mapping of synaptic inputs to projection neurons and cholinergic interneurons in 

the dorsal striatum using modified rabies virus tracing (Guo et al., 2015) 

• Identification of multiple new enhancers to target functionally distinct neuronal 

subtypes in mice, primates and humans (Vormstein-Schneider et al., 2020)  

STUDYING PROGENITORS IN HUMANS 

Brain organoids 

In vitro models that replicate some developmental 

processes of the human brain 

• Study of the transcriptional regulation of progenitor fate that is altered in ASD – 

for example revealing that the overexpression of FoxG1 leads to the 

overproduction of interneurons (Mariani et al., 2015) 

Perturb-Seq 

Introduction of mutations in specific genes by 

gene-editing (e.g. knock out candidate genes in 

mice embryos), followed by single-cell 

transcriptomic analysis. 

• Alteration of cortical lineages in the developing mouse brain and analyzed 35 ASD 

risk genes in 5 cells classes, including projections neurons, inhibitory neurons, 

astrocytes, oligodendrocytes and microglia. They revealed that cell type 

composition remains unaffected, but cell state is affected (Jin et al., 2020). This 

method can be applied across diseases from diverse tissues, such as human PSCs or 

brain organoids 
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