Title
Sign gradations on group-ring extensions of graded rings Sign gradations on group-ring extensions of graded rings
Author
Faculty/Department
Faculty of Sciences. Mathematics and Computer Science
Publication type
article
Publication
Amsterdam ,
Subject
Mathematics
Source (journal)
Journal of pure and applied algebra. - Amsterdam
Volume/pages
85(1993) :3 , p. 311-316
ISSN
0022-4049
ISI
A1993KV50000006
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
For a (group)G-graded ring R and any submonoid H of the center Z(G) containing the identity element e of G we define a G-gradation on the semigroup ring R[H] such that R[H]e congruent-to R(H) where R(H) = +h is-an-element-of H R(h) subset-or-equal-to R, and then we give some applications of the new gradations to graded rings and I-adic filtrations.
Full text (open access)
https://repository.uantwerpen.be/docman/irua/5ba57f/2273.pdf
E-info
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:A1993KV50000006&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:A1993KV50000006&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:A1993KV50000006&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle