Publication
Title
Nitrogen, phosphorus and silicon in riparian ecosystems along the Berg River (South Africa): the effect of increasing human land use
Author
Abstract
The Berg River is one of the main rivers in the Cape Region; it is essential for the local economy and ecology, as it supplies water to agriculture and industries, provides drinking water for the greater Cape Town region, and supports rich aquatic ecosystems. The Berg River is impacted by both diffuse pollution from agricultural run-off and point-source pollution from urban and industrial wastewater. Construction of a dam on the headwaters of the Berg River in 2007 has changed the hydrology of the upper catchment. Pelagic nutrient dynamics in the Berg River are well documented. The opposite is however true for riparian nutrient dynamics. We studied changes in riparian nutrient storage over a gradient in elevation (a proxy for flooding frequency and drought) and human influence (the Berg River dam and lateral nutrient and pollutant input). Our results show that nutrient concentrations in the riparian sediments reflect nutrient concentrations in the river. N concentrations in the sediment increased up to 1 000%, while P concentrations rose up to 200% with increasing human influence. For biogenic Si, we found generally low concentrations throughout the whole gradient sampled (all < 0.5 mg BSi g-1 sediment). Sediments closer to the river appear to have more efficient recycling and export of nutrients into the river. Overall, we conclude that the observed patterns indicate the necessity of incorporating nutrient status and management of riparian habitats in the Berg River monitoring strategy.
Language
English
Source (journal)
Water SA / South African Water Research Commission. - Pretoria, 1975, currens
Publication
Pretoria : 2012
ISSN
0378-4738 [print]
1816-7950 [online]
DOI
10.4314/WSA.V38I4.15
Volume/pages
38 :4 (2012) , p. 597-606
ISI
000308599000015
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Project info
Impact of hydrology on diversity of aquatic organisms in temporary wetlands in the Cape Region (South Africa).
Land Use Changes and Si Transport through the Scheldt River Basin. (LUSi)
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 31.07.2012
Last edited 09.10.2023
To cite this reference