Title
A qualitative comparison of 3D visualization in **Xenopus laevis** using a traditional method and a non-destructive method A qualitative comparison of 3D visualization in **Xenopus laevis** using a traditional method and a non-destructive method
Author
Faculty/Department
Faculty of Sciences. Physics
Publication type
article
Publication
Brussel ,
Subject
Physics
Biology
Source (journal)
Belgian journal of zoology. - Brussel
Volume/pages
142(2012) :2 , p. 101-113
ISSN
0777-6276
ISI
000312578600002
Carrier
E
Target language
English (eng)
Affiliation
University of Antwerp
Abstract
Many tools are currently available to investigate and visualize soft and hard tissues in animals both in high-resolution and three dimensions. The most popular and traditional method is based on destructive histological techniques. However, these techniques have some specific limitations. In order to avoid those limitations, various non-destructive approaches have surfaced in the last decades. One of those is micro-CT-scanning. In the best conditions, resolution achieved in micro-CT currently approaches that of standard histological protocols. In addition to bone, soft tissues can also be made visible through micro-CT-scanning. However, discriminating between structures of the same tissue and among different tissue types remains a challenge. An alternative approach, which has not yet been explored to its full potential for comparative anatomy studies, is Orthogonal-Plane Fluorescence Optical Sectioning (OPFOS) microscopy or tomography, also known as (Laser) Light Sheet based Fluorescence Microscopy (LSFM). In this study, we compare OPFOS with light microscopy, applying those techniques to the model organism Xenopus laevis. The potential of both methods for discrimination between different types of tissues, as well as different structures of the same tissue type, is tested and illustrated. Since the histological sections provided a better resolution, adjacent structures of the same tissue type could be discerned more easily compared to our OPFOS images. However, we obtained a more naturally-shaped 3D model of the musculoskeletal system of Xenopus laevis with OPFOS. An overview of the advantages and disadvantages of both techniques is given and their applicability for a wider scope of biological research is discussed.
E-info
https://repository.uantwerpen.be/docman/iruaauth/cb784e/af43711.pdf
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000312578600002&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000312578600002&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000312578600002&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle