Title
Wigner distribution functions for complex dynamical systems : a path integral approach Wigner distribution functions for complex dynamical systems : a path integral approach
Author
Faculty/Department
Faculty of Sciences. Physics
Publication type
article
Publication
Amsterdam ,
Subject
Physics
Source (journal)
Physica: A: theoretical and statistical physics. - Amsterdam
Volume/pages
392(2013) :2 , p. 326-335
ISSN
0378-4371
ISI
000311135200004
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
Starting from Feynmans Lagrangian description of quantum mechanics, we propose a method to construct explicitly the propagator for the Wigner distribution function of a single system. For general quadratic Lagrangians, only the classical phase space trajectory is found to contribute to the propagator. Inspired by Feynmans and Vernons influence functional theory we extend the method to calculate the propagator for the reduced Wigner function of a system of interest coupled to an external system. Explicit expressions are obtained when the external system consists of a set of independent harmonic oscillators. As an example we calculate the propagator for the reduced Wigner function associated with the CaldeiraLegett model.
E-info
https://repository.uantwerpen.be/docman/iruaauth/4d64f2/1b93577ce4e.pdf
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000311135200004&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000311135200004&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000311135200004&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle