Title
Pseudogap and preformed pairs in the imbalanced Fermi gas in two dimensions Pseudogap and preformed pairs in the imbalanced Fermi gas in two dimensions
Author
Faculty/Department
Faculty of Sciences. Physics
Publication type
article
Publication
Bristol ,
Subject
Physics
Source (journal)
New journal of physics / Institute of Physics; German Physical Society. - Bristol
Volume/pages
14(2012) :10 , 22 p.
ISSN
1367-2630
Article Reference
103044
Carrier
E-only publicatie
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
The physics of the pseudogap state is intimately linked with the pairing mechanism that gives rise to superfluidity in quantum gases and to superconductivity in high-Tc cuprates, and therefore, both in quantum gases and in superconductors, the pseudogap state and preformed pairs have been under intensive experimental scrutiny. Here, we develop a path integral treatment that provides a divergence-free description of the paired state in two-dimensional Fermi gases. Within this formalism, we derive the pseudogap temperature and the pair fluctuation spectral function, and compare these results with a recent experimental measurement of the pairing in the two-dimensional Fermi gas. The removal of the infrared divergence in the number equations is shown both numerically and analytically, through a study of the long-wavelength and low-energy limit of the pair fluctuation density. Besides the pseudogap temperature, the pair formation temperature and the critical temperature for superfluidity are also derived. The latter corresponds to the BerezinskiKosterlitzThouless (BKT) temperature. The pseudogap temperature, which coincides with the pair formation temperature in the mean field, is found to be suppressed with respect to the pair formation temperature by fluctuations. This suppression is strongest for large binding energies of the pairs. Finally, we investigate how the pair formation temperature, the pseudogap temperature and the BKT temperature behave as a function of both binding energy and imbalance between the pairing partners in the Fermi gas. This allows us to set up phase diagrams for the two-dimensional Fermi gas, in which the superfluid phase, the phase-fluctuating quasicondensate and the normal state can be identified.
Full text (open access)
https://repository.uantwerpen.be/docman/irua/424f7d/a4be9d29.pdf
E-info
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000310439900001&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000310439900001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000310439900001&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle