Title
Autophagy and phagocytosis-like cell cannibalism exert opposing effects on cellular survival during metabolic stress Autophagy and phagocytosis-like cell cannibalism exert opposing effects on cellular survival during metabolic stress
Author
Faculty/Department
Faculty of Medicine and Health Sciences
Publication type
article
Publication
Oxford ,
Subject
Chemistry
Biology
Human medicine
Source (journal)
Cell death and differentiation. - Oxford
Volume/pages
19(2012) :10 , p. 1590-1601
ISSN
1350-9047
ISI
000308749400003
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
Understanding mechanisms controlling neuronal cell death and survival under conditions of altered energy supply (e.g., during stroke) is fundamentally important for the development of therapeutic strategies. The function of autophagy herein is unclear, as both its beneficial and detrimental roles have been described. We previously demonstrated that loss of AMP-activated protein kinase (AMPK), an evolutionarily conserved enzyme that maintains cellular energy balance, leads to activity-dependent degeneration in neuronal tissue. Here, we show that energy depletion in Drosophila AMPK mutants results in increased autophagy that convincingly promotes, rather than rescues, neurodegeneration. The generated excessive autophagic response is accompanied by increased TOR and S6K activity in the absence of an AMPK-mediated negative regulatory feedback loop. Moreover, energy-depleted neurons use a phagocytic-like process as a means to cellular survival at the expense of surrounding cells. Consequently, phagocytosis stimulation by expression of the scavenger receptor Croquemort significantly delays neurodegeneration. This study thus reveals a potentially novel strategy for cellular survival during conditions of extreme energy depletion, resembling xeno-cannibalistic events seen in metastatic tumors. We provide new insights into the roles of autophagy and phagocytosis in the neuronal metabolic stress response and open new avenues into understanding of human disease and development of therapeutic strategies. Cell Death and Differentiation (2012) 19, 1590-1601; doi:10.1038/cdd.2012.37; published online 13 April 2012
E-info
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000308749400003&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000308749400003&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000308749400003&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle