Publication
Title
Atypical BCS-BEC crossover induced by quantum-size effects
Author
Abstract
Quantum-size oscillations of the basic physical characteristics of a confined fermionic condensate are a well-known phenomenon. Its conventional understanding is based on the single-particle physics, whereby the oscillations follow variations in the single-particle density of states driven by the size quantization. Here we present a study of a cigar-shaped ultracold superfluid Fermi gas, which demonstrates an important many-body aspect of the quantum-size coherent effects, overlooked previously. The many-body physics is revealed here in the atypical crossover from the Bardeen-Cooper-Schrieffer (BCS) superfluid to the Bose-Einstein condensate (BEC) induced by the size quantization of the particle motion. The single-particle energy spectrum for the transverse dimensions is tightly bound, whereas for the longitudinal direction it resembles a quasi-free dispersion. This results in the formation of a series of single-particle subbands (shells) so that the aggregate fermionic condensate becomes a coherent mixture of subband condensates. Each time when the lower edge of a subband crosses the chemical potential, the BCS-BEC crossover is approached in this subband, and the aggregate condensate contains both BCS and BEC-like components.
Language
English
Source (journal)
Physical review : A : atomic, molecular and optical physics. - Lancaster, Pa, 1990 - 2015
Publication
Lancaster, Pa : 2012
ISSN
1094-1622 [online]
1050-2947 [print]
DOI
10.1103/PHYSREVA.86.033612
Volume/pages
86 :3 (2012) , 7 p.
Article Reference
033612
ISI
000308639500004
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 22.11.2012
Last edited 09.10.2023
To cite this reference