Title
|
|
|
|
Atypical BCS-BEC crossover induced by quantum-size effects
| |
Author
|
|
|
|
| |
Abstract
|
|
|
|
Quantum-size oscillations of the basic physical characteristics of a confined fermionic condensate are a well-known phenomenon. Its conventional understanding is based on the single-particle physics, whereby the oscillations follow variations in the single-particle density of states driven by the size quantization. Here we present a study of a cigar-shaped ultracold superfluid Fermi gas, which demonstrates an important many-body aspect of the quantum-size coherent effects, overlooked previously. The many-body physics is revealed here in the atypical crossover from the Bardeen-Cooper-Schrieffer (BCS) superfluid to the Bose-Einstein condensate (BEC) induced by the size quantization of the particle motion. The single-particle energy spectrum for the transverse dimensions is tightly bound, whereas for the longitudinal direction it resembles a quasi-free dispersion. This results in the formation of a series of single-particle subbands (shells) so that the aggregate fermionic condensate becomes a coherent mixture of subband condensates. Each time when the lower edge of a subband crosses the chemical potential, the BCS-BEC crossover is approached in this subband, and the aggregate condensate contains both BCS and BEC-like components. |
| |
Language
|
|
|
|
English
| |
Source (journal)
|
|
|
|
Physical review : A : atomic, molecular and optical physics. - Lancaster, Pa, 1990 - 2015
| |
Publication
|
|
|
|
Lancaster, Pa
:
2012
| |
ISSN
|
|
|
|
1094-1622
[online]
1050-2947
[print]
| |
Volume/pages
|
|
|
|
86
:3
(2012)
, 7 p.
| |
Article Reference
|
|
|
|
033612
| |
ISI
|
|
|
|
000308639500004
| |
Medium
|
|
|
|
E-only publicatie
| |
Full text (Publisher's DOI)
|
|
|
|
| |
Full text (open access)
|
|
|
|
| |
|