Title
Factorization of Laplace operators on higher spin representations
Author
Faculty/Department
Faculty of Sciences. Mathematics and Computer Science
Publication type
article
Publication
Subject
Mathematics
Source (journal)
Complex analysis and operator theory
Volume/pages
6(2012) :5 , p. 1011-1023
ISSN
1661-8254
ISI
000310225000003
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
This paper deals with the problem of factorizing integer powers of the Laplace operator acting on functions taking values in higher spin representations. This is a far-reaching generalization of the well-known fact that the square of the Dirac operator is equal to the Laplace operator. Using algebraic properties of projections of Stein-Weiss gradients, i.e. generalized Rarita-Schwinger and twistor operators, we give a sharp upper bound on the order of polyharmonicity for functions with values in a given representation with half-integral highest weight.
E-info
https://repository.uantwerpen.be/docman/iruaauth/b67f37/7152732.pdf
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000310225000003&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000310225000003&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000310225000003&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle