Publication
Title
Determination of ligand pathways in globins apolar tunnels versus polar gates
Author
Abstract
Although molecular dynamics simulations suggest multiple interior pathways for O-2 entry into and exit from globins, most experiments indicate well defined single pathways. In 2001, we highlighted the effects of large-to-small amino acid replacements on rates for ligand entry and exit onto the three-dimensional structure of sperm whale myoglobin. The resultant map argued strongly for ligand movement through a short channel from the heme iron to solvent that is gated by the distal histidine (His-64(E7)) near the solvent edge of the porphyrin ring. In this work, we have applied the same mutagenesis mapping strategy to the neuronal mini-hemoglobin from Cerebratulus lacteus (CerHb), which has a large internal tunnel from the heme iron to the C-terminal ends of the E and H helices, a direction that is 180 opposite to the E7 channel. Detailed comparisons of the new CerHb map with expanded results for Mb show unambiguously that the dominant (> 90%) ligand pathway in CerHb is through the internal tunnel, and the major (> 75%) ligand pathway in Mb is through the E7 gate. These results demonstrate that: 1) mutagenesis mapping can identify internal pathways when they exist; 2) molecular dynamics simulations need to be refined to address discrepancies with experimental observations; and 3) alternative pathways have evolved in globins to meet specific physiological demands.
Language
English
Source (journal)
Journal of biological chemistry. - Baltimore, Md
Publication
Baltimore, Md : 2012
ISSN
0021-9258 [print]
1083-351X [online]
DOI
10.1074/JBC.M112.392258
Volume/pages
287 :40 (2012) , p. 33163-33178
ISI
000309602100008
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 06.12.2012
Last edited 09.10.2023
To cite this reference