Publication
Title
Reactive molecular dynamics simulations on -coated ultra-small Si-nanowires
Author
Abstract
The application of coreshell SiSiO2 nanowires as nanoelectronic devices strongly depends on their structure, which is difficult to tune precisely. In this work, we investigate the formation of the coreshell nanowires at the atomic scale, by reactive molecular dynamics simulations. The occurrence of two temperature-dependent oxidation mechanisms of ultra-small diameter Si-NWs is demonstrated. We found that control over the Si-core radius and the SiOx (x ≤ 2) oxide shell is possible by tuning the growth temperature and the initial Si-NW diameter. Two different structures were obtained, i.e., ultrathin SiO2 silica nanowires at high temperature and Si core|ultrathin SiO2 silica nanowires at low temperature. The transition temperature is found to linearly decrease with the nanowire curvature. Finally, the interfacial stress is found to be responsible for self-limiting oxidation, depending on both the initial Si-NW radius and the oxide growth temperature. These novel insights allow us to gain control over the exact morphology and structure of the wires, as is needed for their application in nanoelectronics.
Language
English
Source (journal)
Nanoscale / Royal Society of Chemistry [London] - Cambridge, 2009, currens
Publication
Cambridge : 2013
ISSN
2040-3364 [print]
2040-3372 [online]
DOI
10.1039/C2NR32387G
Volume/pages
5 :2 (2013) , p. 719-725
ISI
000313426200036
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Project info
2D-NANOLATTICES: Strongly anisotropic Graphite-like semiconductor/dielectric 2D nanolattices
CalcUA as central calculation facility: supporting core facilities.
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 02.01.2013
Last edited 22.01.2024
To cite this reference