Publication
Title
Conformational-analysis and structural study by ab-initio gradient geometry optimizations of the model tripeptide n-formyl l-alanyl l-alanine amide
Author
Abstract
The geometries of 15 conformations of the model tripeptide N-formyl L-alanyl L-alanine amide (Ala-Ala) were determined by ab initio gradient geometry refinements at the HF/4-21G level. The results can be compared with previous HF/4-21G calculations on the single residue, N-formyl alanine amide (Ala), and the model hexapeptide, N-formyl pentaalanine amide (Penta-Ala). Cooperative energy effects are found in Ala-Ala that are subtle in some (phi1, psi1 and phi2, psi2) conformations, such as (C7eq, C7ax), (beta, C7eq) and (C7ax, C7ax), but more pronounced in bend forms, such as (C7eq, alpha'), (C7eq, alpha(L)), and (C7ax, 3/10). Optimization of alpha-helical structures leads to 3/10-type helices, both in empirical CHARMm and ab initio HF/4-21G calculations, away from alpha(R). This property of the calculated vacuum structures is in agreement with experimental investigations of short alanine based peptides in aqueous solution. The conformationally dependent structural trends found here for Ala-Ala are in agreement with the trends previously derived for Ala and Penta-Ala. They are particularly significant for the N-C(alpha)-C' angle. This parameter shows variations of up to 8-degrees in the selected conformers and, regardless of how the residues are combined, its extension follows the approximate sequence beta < C7eq < C7ax almost-equal-to 3/10-helix.
Language
English
Source (journal)
Theochem: applications of theoretical chemistry to organic, inorganic and biological problems. - Amsterdam, 1981 - 2010
Publication
Amsterdam : 1993
ISSN
0166-1280
Volume/pages
105 (1993) , p. 149-163
ISI
A1993MG70400015
UAntwerpen
Faculty/Department
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 03.01.2013
Last edited 30.08.2024
To cite this reference