Title
|
|
|
|
On differences of Feynman-Kac semigroups : a trace class property = Sur des différences de semi-groupes de Feynman-Kac: une propriété de trace
| |
Author
|
|
|
|
| |
Abstract
|
|
|
|
Let E be a locally compact second countable Hausdorff space, let SIGMA be an open subset of E and let m be a non-negative Radon measure on E. Let K0 be the generator of a symmetric strongly continuous L1 (E, m) - L(infinity) (E, m)-smoothing Feller semigroup {exp (- t K0): t greater-than-or-equal-to 0} consisting of integral operators with continuous kernel. Under the hypotheses that E\SIGMA has finite capacity, that V - belongs to L1 (E, m) and that the square gradient operator exists in an appropriate sense, the operators exp (- t (K0 + V)) - J* exp (- t (K0 + V)SIGMA) J, t > 0, are trace class. Here Jf is the restriction to SIGMA of the function f, defined on E. |
| |
Language
|
|
|
|
French
| |
Source (journal)
|
|
|
|
Comptes rendus de l'Académie des sciences: série 1 : mathématique. - Paris, 1984 - 2001
| |
|
|
|
|
Comptes rendus des séances de l'Académie des sciences: série 1: sciences mathématiques
| |
Publication
|
|
|
|
Paris
:
Elsevier
,
1992
| |
ISSN
|
|
|
|
0764-4442
[print]
1778-3577
[online]
| |
Volume/pages
|
|
|
|
314
:13
(1992)
, p. 997-1002
| |
ISI
|
|
|
|
A1992JC50300007
| |
|