Publication
Title
On differences of Feynman-Kac semigroups : a trace class property = Sur des différences de semi-groupes de Feynman-Kac: une propriété de trace
Author
Abstract
Let E be a locally compact second countable Hausdorff space, let SIGMA be an open subset of E and let m be a non-negative Radon measure on E. Let K0 be the generator of a symmetric strongly continuous L1 (E, m) - L(infinity) (E, m)-smoothing Feller semigroup {exp (- t K0): t greater-than-or-equal-to 0} consisting of integral operators with continuous kernel. Under the hypotheses that E\SIGMA has finite capacity, that V - belongs to L1 (E, m) and that the square gradient operator exists in an appropriate sense, the operators exp (- t (K0 + V)) - J* exp (- t (K0 + V)SIGMA) J, t > 0, are trace class. Here Jf is the restriction to SIGMA of the function f, defined on E.
Language
French
Source (journal)
Comptes rendus de l'Académie des sciences: série 1 : mathématique. - Paris, 1984 - 2001
Comptes rendus des séances de l'Académie des sciences: série 1: sciences mathématiques
Publication
Paris : Elsevier , 1992
ISSN
0764-4442 [print]
1778-3577 [online]
Volume/pages
314 :13 (1992) , p. 997-1002
ISI
A1992JC50300007
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 03.01.2013
Last edited 15.10.2024
To cite this reference