Publication
Title
Scaling and critical probabilities for cluster size and LA diversity on randomly occupied square lattices
Author
Abstract
Using Monte Carlo simulations, we report the behaviour of the total number of clusters, the cluster size diversity and the lattice animals (LA) diversity on randomly occupied square lattices. The critical probability associated with the maximum of these variables is determined in comparison with the percolation probability p(c). Our simulations indicate that p(c) and the critical probability of the maximum cluster size diversity p(c) (D-s (max)), occur at the same point. As indicated in a previous paper (Tsang I R and Tsang I J 1997 J. Phys. A: Math. Gen. 30 L239), the probability for the maximum number of clusters is obtained at a lower value, p(c)(N-max) = 0.27 +/- 0.01. We describe the cluster identification algorithm used to count the different LA and determined the critical probability for the maximum LA diversity, p(c)(D-f max) = 0.45 +/- 0.02. We derive the exponents characterizing the relation between D-s max, D-f max, and N-max and several scaling relations between the variables measured, the lattice size, and the probability of occupation p. In addition, we show the scaling behaviour of LA diversity versus cluster size diversity for each value of p.
Language
English
Source (journal)
Journal of physics: A: mathematical and general. - London, 1968 - 2006
Publication
London : 2000
ISSN
0305-4470
Volume/pages
33:14(2000), p. 2739-2754
ISI
000087825600011
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identification
Creation 03.01.2013
Last edited 22.09.2017
To cite this reference