Title
Validity of residential traffic intensity as an estimate of long-term personal exposure to traffic-related air pollution among adults Validity of residential traffic intensity as an estimate of long-term personal exposure to traffic-related air pollution among adults
Author
Faculty/Department
Faculty of Medicine and Health Sciences
Publication type
article
Publication
Easton, Pa ,
Subject
Chemistry
Biology
Source (journal)
Environmental science and technology / American Chemical Society. - Easton, Pa
Volume/pages
42(2008) :4 , p. 1337-1344
ISSN
0013-936X
ISI
000253250800061
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
The validity of traffic intensity near the home as an estimate for the personal long-term exposure to traffic-related air pollution in an adult population was tested. Personal and near-home outdoor exposure to PM2.5, soot, NO, NO2, and NOx was monitored four to five times during 48 h periods in older adults. A group of 23 participants lived in high traffic intensity streets (>10000 vehicles/(24, h)), and 22 lived in low traffic intensity streets. The relation between average personal exposure and traffic intensity at the residential address was explored by taking indoor sources into account. Large differences in the measured outdoor concentrations between locations in high traffic and low traffic intensity streets were found for soot (68%), NO (127%), and NOx (35%). Differences were smaller for PM2.5 (14%) and NO2 (22%). Slightly elevated ratios were found for personal exposure to soot (1.15; 95% confidence interval (CI), 1.01-1.30) when comparing adults living in high traffic intensity streets with adults living in low traffic intensity streets. For NO, increased personal exposure (1.16) was seen for the same comparison, but this difference failed to reach statistical significance (CI, 0.80-1.66). Traffic intensity on the street of residence predicted personal exposure to soot but not to PM2.5 or nitrogen oxides. Traffic intensity may not correlate well to personal exposure and accordingly substantial misclassification of exposure may occur when traffic intensity is used as an exposure indicator in epidemiological studies. Time spent in traffic and spending time outdoors were associated with increased personal exposure of soot and PM2.5, but not NO,.
E-info
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000253250800061&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000253250800061&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000253250800061&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle