Title
Copper stabilization by zeolite synthesis in polluted soils treated with coal fly ash Copper stabilization by zeolite synthesis in polluted soils treated with coal fly ash
Author
Faculty/Department
Faculty of Sciences. Chemistry
Publication type
article
Publication
Easton, Pa ,
Subject
Chemistry
Biology
Source (journal)
Environmental science and technology / American Chemical Society. - Easton, Pa
Volume/pages
39(2005) :16 , p. 6280-6287
ISSN
0013-936X
ISI
000231203100053
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
This study deals with the process of zeolite formation in an agricultural soil artificially polluted by high amounts of Cu (15 mg of Cu/g of soil dry weight) and treated with fused coal fly ash at 30 and 60 degrees C and how this process affects the mobility and availability of the metal. As a consequence of the treatment, the amount of dissolved Cu, and thus its mobility, was strongly reduced, and the percentage of the metal stabilized in the solid phase increased over time, reaching values of 30% at 30 degrees C and 40% at 60 degrees C. The physicochemical phenomena responsible for Cu stabilization in the solid phase have been evaluated by EDTA sequential extractions and synchrotron radiation based X-ray microanalytical techniques. These techniques were used for the visualization of the spatial distribution and the speciation of Cu in and/or on the neo-formed zeolite particles. In particular, micro XRF (X-ray fluorescence) tomography showed direct evidence that Cu can be entrapped as clusters inside the porous zeolitic structures while,mu-XANES (X-ray absorption near edge structure) spectroscopy determinations revealed Cu to be present mainly as Cu(II) hydroxide and Cu(II) oxide. The reported results could be useful as a basic knowledge for planning new technologies for the on site physicochemical stabilization of heavy metals in heavily polluted soils.
E-info
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000231203100053&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000231203100053&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000231203100053&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle