Title
Testing the direct effect of <tex>$CO_{2}$</tex> concentration on a bloom of the coccolithophorid Emiliania huxleyi in mesocosm experiments
Author
Faculty/Department
Faculty of Sciences. Chemistry
Publication type
article
Publication
Lawrence, Kan. ,
Subject
Biology
Source (journal)
Limnology and oceanography. - Lawrence, Kan.
Volume/pages
50(2005) :2 , p. 493-507
ISSN
0024-3590
ISI
000227835200010
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
We studied the direct effects of CO, and related changes in seawater carbonate chemistry on marine planktonic organisms in a mesocosm experiment. In nine outdoor enclosures (similar to 11 m(3) each), the partial pressure of CO2 (pCO(2)) in the seawater was modified by an aeration system. The triplicate mesocosm treatments represented low (similar to 190 parts per million by volume (ppmV) CO2), present (similar to 410 ppmV CO2), and high (similar to 710 ppmV CO2) pCO(2) conditions. After initial fertilization with nitrate and phosphate a bloom dominated by the coccolithophorid Emiliania huxleyi occurred simultaneously in all of the nine mesocosms; it was monitored over a 19-day period, The three CO2 treatments assimilated nitrate and phosphate similarly. The concentration of particulate constituents was highly variable among the replicate mesocosms, disguising direct CO2-related effects. Normalization of production rates within each treatment, however, indicated that the net specific growth rate of E. huxleyi, the rate of calcification per cell, and the elemental stoichiometry of uptake and production processes were sensitive to changes in pCO(2). This broad influence of CO2 on the E huxleyi bloom suggests that changes in CO2 concentration directly affect cell physiology with likely effects on the marine biogeochemistry.
E-info
https://repository.uantwerpen.be/docman/iruaauth/1e0d1d/f8e6214.pdf
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000227835200010&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000227835200010&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000227835200010&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle