Title
Differentiable functions of quaternion variables Differentiable functions of quaternion variables
Author
Faculty/Department
Faculty of Sciences. Mathematics and Computer Science
Publication type
article
Publication
Paris ,
Subject
Mathematics
Source (journal)
Bulletin des sciences mathématiques. - Paris
Volume/pages
127(2003) :9 , p. 755-796
ISSN
0007-4497
ISI
000186564800001
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
We investigate differentiability of functions defined on regions of the real quaternion field and obtain a noncommutative version of the Cauchy-Riemann conditions. Then we study the noncommutative analog of the Cauchy integral as well as criteria for functions of a quternion variable to be analytic. In particular, the quaternionic exponential and logarithmic functions are being considered. Main results include quaternion versions of Hurwitz' theorem, Mittag-Leffler's theorem and Weierstrass' theorem. (C) 2003 Editions scientifiques et medicales Elsevier SAS. All rights reserved.
Full text (open access)
https://repository.uantwerpen.be/docman/irua/bc8833/4984.pdf
E-info
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000186564800001&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000186564800001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000186564800001&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle