Title
Electrostatic interpretation of an electron density associated with the spherical exchange-correlation potential <tex>$V_{xc}(r)$</tex> in atoms : application to Be Electrostatic interpretation of an electron density associated with the spherical exchange-correlation potential <tex>$V_{xc}(r)$</tex> in atoms : application to Be
Author
Faculty/Department
Faculty of Sciences. Physics
Publication type
article
Publication
Lancaster, Pa ,
Subject
Physics
Source (journal)
Physical review : A : atomic, molecular and optical physics. - Lancaster, Pa, 1990 - 2015
Volume/pages
65(2002) :3 Part b , p. 1-3
ISSN
1094-1622
1050-2947
Article Reference
034501
Carrier
E-only publicatie
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
By means of an electrostatic analogy, an electron density is proposed that is related to the exchange-correlation potential V (xc)(r) in atoms. More precisely, such an electron density is best characterized by the amount of electronic charge Q (xc)(r), say, enclosed within a sphere of radius r centered on the atomic nucleus. Then Q (xc)(r) is related to the radial derivative of V (xc)(r) by Q (xc)(r) = -r(2)partial derivativeV (xc)/partial derivativer. \Q (xc)(r)\ tends to unity as r-->infinity and becomes zero in the limit r-->0. However, it increases at first as one comes away from the point at infinity, having the form at large r \Q (xc)(r)­>1+2alpha/r(3)+O(1/r(4)), where alpha is the dipole polarizability of the singly charged positive ion. This means that \Q (xc)(r)\ must have at least one maximum, its height Q (xc)(r(m)) and its position r(m) then being important parameters characterizing the shape of Q (xc)(r). The intersection(s) with the line \Q (xc)\ = 1 are also plainly of importance in this same context. The exact form of Q (xc)(r) involves both fully interacting one- and two-particle fermion density matrices, as well as the orbitals of the Slater-Kohn-Sham (SKS) reference system. However, the example of Be is worked out, where it is shown that, if the ground-state density rho(r) = rho(SKS)(r) is known from either x-ray or electron diffraction experiments or from quantal computer simulation studies, then Q (xc)(r) can be derived for this light atom.
Full text (open access)
https://repository.uantwerpen.be/docman/irua/1bcebf/6711.pdf
E-info
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000174548600098&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000174548600098&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000174548600098&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle