Publication
Title
Study of the thermal decomposition of melt-quenched Ni-rich metastable bcc and amorphous Ni-Zr alloys
Author
Abstract
The phase transformation sequences during thermal decomposition are investigated for Ni-rich melt-quenched body-centred cubic (bcc) and amorphous Ni-Zr alloys. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) are used to determine the structure of crystallization products occurring after heating the melt-spun ribbon samples to various degrees of the phase transformation process monitored by differential scanning calorimetry (DSC). A single DSC peak is observed for both the bcc and amorphous Ni(91)Zr(9) alloys and a two-step process is indicated by DSC for the amorphous Ni(90)Zr(10) alloy. In the bcc-Ni(91)Zr(9) alloy which is actually a Ni(Zr) solid solution phase, the phase transformation starts with the precipitation of Ni(5)Zr crystallites followed, after a sufficient depletion of the matrix in Zr, by the subsequent transformation of the bcc-Ni(Zr) lattice to face-centred cubic (fcc) Ni. In the amorphous alloy of the same composition, the final products are fcc-Ni and Ni(5)Zr but at intermediate stages of the phase transformation, bcc-Ni(Zr) crystallites also appear. In the a-Ni(90)Zr(10) alloy the first DSC peak corresponds to the formation of the bcc-Ni(Zr) phase which then decomposes (second DSC peak) to the equilibrium phases fcc-Ni and Ni(5)Zr. Thus, in addition to the previous observation of the formation of the metastable bcc-Ni(Zr) phase by rapid quenching from the melt, here we present evidence that this phase can form also after partial crystallization of metallic glasses of appropriate chemical compositions.
Language
English
Source (journal)
International journal of non-equilibrium processing. - Bicester
Publication
Bicester : AB Academic Publishers, 1998
ISSN
1368-9290
Volume/pages
10:3-4(1998), p. 265-282
ISI
000075187300004
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identification
Creation 03.01.2013
Last edited 22.11.2017
To cite this reference