Title
Observations of intermetallic compound formation of hot dip aluminized steel Observations of intermetallic compound formation of hot dip aluminized steel
Author
Faculty/Department
Faculty of Sciences. Physics
Publication type
article
Publication
Lausanne ,
Subject
Physics
Source (journal)
Aluminium alloys: part 1-2
Materials science forum. - Lausanne, 1984, currens
Volume/pages
519-521(2006) :1-2 , p. 1871-1875
ISSN
0255-5476
1662-9752
ISI
000240309000296
Carrier
E
Target language
English (eng)
Affiliation
University of Antwerp
Abstract
A hot dip aluminizing process to simulate the continuous galvanizing line (CGL) was carried out in three successive steps by a hot dip simulator: the pre-treatment for removing scales on the 200 x 250 mm(2) and 1mm in thickness cold rolled steel sheet, the dipping in 660 degrees C Al-Si melt for 3s and the cooling. In a pre-treatment, the steel specimen was partly coated by Au to confirm the mechanism of intermetallic compound (IMC) formation. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) analyses were followed to observe the cross-section and the distribution of the elements. The specimen was analyzed in the boundary of the dipped-undipped part to see the formation mechanism of the aluminized steel. An intermetallic compound (IMC) is rapidly developed and grown in the steel-liquid interface. It has been usually reported that the IMC was formed by the dissolution of iron in the steel substrate toward the melt and the diffusion of aluminum in an opposite direction. The specimen is covered with aluminum-10 wt.% silicon, forms the IMC in the part that was not Au coated. However, IMC is not formed in the Au-coated part. The interface of the dipped-undipped is also analyzed by EDX. At the interface of the steel-IMC, it is clearly shown that the IMC is only formed in the dipped part and exists in the steel substrate as well, and contributes by iron, aluminum and silicon. The result clearly shows that only aluminum diffuses into the steel substrate without the dissolution of iron and forms the IMC between the steel substrate and the melt. Au coating and the short dipping time prevent the iron from dissolving into the aluminum melt. By TEM combined with focused ion beam (FIB) sample preparation, the IMC is confirmed as Fe2SiAl8, a hexagonal structure with space group P6(3)/mmc.
E-info
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000240309000296&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000240309000296&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000240309000296&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle