Publication
Title
Melting and evaporation in classical two-dimensional clusters confined by a Coulomb potential
Author
Abstract
The thermal properties of a two-dimensional classical cluster of negatively charged particles bound by a punctual positive charge are presented. The melting phenomenon is analyzed and the features which characterize such a solid-liquid transition are highlighted. We found that the presence of metastable states strongly modifies the melting scenario, and that the melting temperature of the system is determined by the height of the saddle point energy separating the ground state and the metastable state. Due to the particular type of confinement potential considered in this paper, we also found that, at sufficiently large temperature, the cluster can become thermally ionized.
Language
English
Source (journal)
Physical review : E : statistical, nonlinear, and soft matter physics / American Physical Society. - Melville, N.Y., 2001 - 2015
Publication
Melville, N.Y. : American Physical Society, 2005
ISSN
1539-3755 [print]
1550-2376 [online]
Volume/pages
72:4 Part 1(2005), p. 1-7
Article Reference
041502
ISI
000232930600030
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identification
Creation 03.01.2013
Last edited 16.08.2017
To cite this reference