Title
|
|
|
|
Effect of helium/argon gas ratio in a He-Ar- IR hollow-cathode discharge laser : modeling study and comparison with experiments
| |
Author
|
|
|
|
| |
Abstract
|
|
|
|
The He-Ar-Cu+ IR laser operates in a hollow-cathode discharge, typically in a mixture of helium with a few-% Ar. The population inversion of the Cu+ ion levels, responsible for laser action, is attributed to asymmetric charge transfer between He+ ions and sputtered Cu atoms. The Ar gas is added to promote sputtering of the Cu cathode. In this paper, a hybrid modeling network consisting of several different models for the various plasma species present in a He-Ar-Cu hollow-cathode discharge is applied to investigate the effect of Ar concentration in the gas mixture on the discharge behavior, and to find the optimum He/Ar gas ratio for laser operation. It is found that the densities of electrons, Ar+ ions, Ar-m* metastable atoms, sputtered Cu atoms and Cu+ ions increase upon the addition of more Ar gas, whereas the densities of He+ ions, He-2(+) ions and He-m* metastable atoms drop considerably. The product of the calculated Cu atom and He+ ion densities, which determines the production rate of the upper laser levels, and hence probably also the laser output power, is found to reach a maximum around 1-5% Ar addition. This calculation result is compared to experimental measurements, and reasonable agreement has been reached. |
| |
Language
|
|
|
|
English
| |
Source (journal)
|
|
|
|
Applied physics: B: photo-physics and laser chemistry / German Physical Society. - Berlin
Applied physics B : lasers and optics. - Heidelberg, 1994, currens
| |
Publication
|
|
|
|
Berlin
:
2003
| |
ISSN
|
|
|
|
0721-7269
| |
DOI
|
|
|
|
10.1007/S00340-002-1093-3
| |
Volume/pages
|
|
|
|
76
:3
(2003)
, p. 299-306
| |
ISI
|
|
|
|
000182758000017
| |
Full text (Publisher's DOI)
|
|
|
|
| |
Full text (publisher's version - intranet only)
|
|
|
|
| |
|