Title
Transcontinental communication and quantitative digital histopathology via the Internet; with special reference to prostate neoplasiaTranscontinental communication and quantitative digital histopathology via the Internet; with special reference to prostate neoplasia
Author
Faculty/Department
Faculty of Sciences. Physics
Faculty of Medicine and Health Sciences
Research group
Department of Physics
Faculteit Geneeskunde
Publication type
article
Publication
London,
Subject
Human medicine
Source (journal)
Journal of clinical pathology. - London
Volume/pages
55(2002):6, p. 452-460
ISSN
0021-9746
ISI
000176176400010
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
Objective: To describe practical experiences in the sharing of very large digital data bases of histopathological imagery via the Internet, by investigators working in Europe, North America, and South America. Materials: Experiences derived from medium power (sampling density 2.4 pixels/mum) and high power (6 pixels/mum) imagery of prostatic tissues, skin shave biopsies, breast lesions, endometrial sections, and colonic lesions. Most of the data included in this paper were from prostate. In particular, 1168 histological images of normal prostate, high grade prostatic intraepithelial neoplasia (PIN), and prostate cancer (PCa) were recorded, archived in an image format developed at the Optical Sciences Center (OSC), University of Arizona, and transmitted to Ancona, Italy, as JPEG (joint photographic experts group) files. Images were downloaded for review using the Internet application FTP (file transfer protocol). The images were then sent from Ancona to other laboratories for additional histopathological review and quantitative analyses. They were viewed using Adobe Photoshop, Paint Shop Pro, and Imaging for Windows. For karyometric analysis full resolution imagery was used, whereas histometric analyses were carried out on JPEG imagery also. Results: The three applications of the telecommunication system were remote histopathological assessment, remote data acquisition, and selection of material. Typical data volumes for each project ranged from 120 megabytes to one gigabyte, and transmission times were usually less than one hour. There were only negligible transmission errors, and no problem in efficient communication, although real time communication was an exception, because of the time zone differences. As far as the remote histopathological assessment of the prostate was concerned, agreement between the pathologist's electronic diagnosis and the diagnostic label applied to the images by the recording scientist was present in 96.6% of instances. When these images were forwarded to two pathologists, the level of concordance with the reviewing pathologist who originally downloaded the files from Tucson was as high as 97.2% and 98.0%. Initial results of studies made by researchers belonging to our group but located in others laboratories showed the feasibility of making quantitative analysis on the same images. Conclusions: These experiences show that diagnostic teleconsultation and quantitative image analyses via the Internet are not only feasible, but practical, and allow a close collaboration between researchers widely separated by geographical distance and analytical resources.
E-info
https://repository.uantwerpen.be/docman/iruaauth/68205a/7fa4177.pdf
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000176176400010&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000176176400010&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000176176400010&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle