Publication
Title
Structural anelasticity of NiTi during two-stage martensitic transformation
Author
Abstract
The two-staged thermoelastic martensitic transformation (TMT) B2-->R-->B19' in polycrystalline equiatomic NiTi has been studied by means of measurements of strain amplitude-independent and amplitude-dependent internal friction (ADIF), Young's modulus and amplitude-dependent modulus defects. The internal friction measurements were performed at a frequency of about 100 kHz, rendering negligible the transient internal friction component and allowing one to investigate the structural internal friction, much less dependent on the external parameters such as the heating/cooling rate or the frequency of vibrations. Attention is focussed on the amplitude-dependent anelasticity. Based on the data obtained, the anelasticity is associated with the dislocations inside the martensitic variants, not with the interfaces or interface dislocations, as is traditionally done. The ADIF and anelastic strain in the R phase have been found to be an order of magnitude higher than in the B19' martensitic phase. This observation is explained by a much higher density of the dislocations inside the variants of the R phase as compared with that of the B19' phase. (C) 2000 Elsevier Science S.A. All rights reserved.
Language
English
Source (journal)
Journal of alloys and compounds. - Amsterdam
Source (book)
12th International Conference on Internal Friction and Ultrasonic, Attenuation in Solids (ICIFUAS-12), JUL 19-23, 1999, BUENOS AIRES, ARGENTINA
Publication
Amsterdam : 2000
ISSN
0925-8388
DOI
10.1016/S0925-8388(00)01018-5
Volume/pages
310 (2000) , p. 312-317
ISI
000089480800065
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 03.01.2013
Last edited 04.09.2024
To cite this reference