Title
The spectrum of mutations in UBE3A causing Angelman syndrome The spectrum of mutations in UBE3A causing Angelman syndrome
Author
Faculty/Department
Faculty of Pharmaceutical, Biomedical and Veterinary Sciences. Pharmacy
Publication type
article
Publication
Oxford ,
Subject
Chemistry
Biology
Human medicine
Source (journal)
Human molecular genetics. - Oxford
Volume/pages
8(1999) :1 , p. 129-135
ISSN
0964-6906
ISI
000078377200016
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
Angelman syndrome (AS) is characterized by mental retardation, absence of speech, seizures and motor dysfunction, AS is caused by maternal deletions for chromosome 15q11-q13, paternal uniparental disomy (UPD), imprinting defects or loss-of-function mutations in the UBE3A locus which encodes E6-AP ubiquitin-protein ligase, The UBE3A gene is imprinted with paternal silencing in human brain and similar silencing of the Ube3a locus in Purkinje cells and hippocampal neurons in the mouse. We have sequenced the major coding exons for UBE3A in 56 index patients with a clinical diagnosis of AS and a normal DNA methylation pattern. The analysis identified disease-causing mutations in 17 of 56 patients (30%) including 13 truncating mutations, two missense mutations, one single amino acid deletion and one stop codon mutation predicting an elongated protein. Mutations were identified in six of eight families (75%) with more than one affected case, and in 11 of 47 isolated cases (23%); no mutation was found in one family with two siblings, one with a typical and one with an atypical phenotype, Mutations were de novo in nine of the 11 isolated cases. An amino acid polymorphism of threonine substituted for alanine at codon 178 was identified, and a 3 bp length polymorphism was found in the intron upstream of exon 8, In all informative cases, phenotypic expression was consistent with imprinting with a normal phenotype when a mutation was on the paternal chromosome and an AS phenotype when a mutation was on the maternal chromosome. Laboratory diagnosis and genetic counseling for AS are complex, and mutation analysis is valuable in clinically typical AS patients with a normal methylation analysis.
E-info
https://repository.uantwerpen.be/docman/iruaauth/8144dc/ade4259.pdf
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000078377200016&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000078377200016&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000078377200016&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle