Title
Single-photon emission computed tomographic imaging of the early time course of therapy-induced cell death using technetium 99m tricarbonyl His-annexin A5 in a colorectal cancer xenograft model Single-photon emission computed tomographic imaging of the early time course of therapy-induced cell death using technetium 99m tricarbonyl His-annexin A5 in a colorectal cancer xenograft model
Author
Faculty/Department
Faculty of Medicine and Health Sciences
Publication type
article
Publication
Subject
Human medicine
Source (journal)
Molecular imaging
Volume/pages
11(2012) :2 , p. 135-147
ISSN
1535-3508
ISI
000307645900005
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
As apoptosis occurs over an interval of time after administration of apoptosis-inducing therapy in tumors, the changes in technetium 99m (99mTc)-tricarbonyl (CO)3 His-annexin A5 (His-ann A5) accumulation over time were examined. Colo205-bearing mice were divided into six treatment groups: (1) control, (2) 5-fluorouracil (5-FU; 250 mg/kg), (3) irinotecan (100 mg/kg), (4) oxaliplatin (30 mg/kg), (5) bevacizumab (5 mg/kg), and (6) panitumumab (6 mg/kg). 99mTc-(CO)3 His-ann A5 was injected 4, 8, 12, 24, and 48 hours posttreatment, and microsingle-photon emission computed tomography was performed. Immunostaining of caspase-3 (apoptosis), survivin (antiapoptosis), and LC3-II (autophagy marker) was also performed. Different dynamics of 99mTc-(CO)3 His-ann A5 uptake were observed in this colorectal cancer xenograft model, in response to a single dose of three different chemotherapeutics (5-FU, irinotecan, and oxaliplatin). Bevacizumab-treated mice showed no increased uptake of the radiotracer, and a peak of 99mTc-(CO)3 His-ann A5 uptake in panitumumab-treated mice was observed 24 hours posttreatment, as confirmed by caspase-3 immunostaining. For irinotecan-, oxaliplatin-, and bevacizumab-treated tumors, a significant correlation was established between the radiotracer uptake and caspase-3 immunostaining (r = .8, p < .05; r = .9, p < .001; r = .9, p < .001, respectively). For 5-FU- and panitumumab-treated mice, the correlation coefficients were r = .7 (p = .18) and r = .7 (p = .19), respectively. Optimal timing of annexin A5 imaging after the start of different treatments in the Colo205 model was determined.
E-info
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000307645900005&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000307645900005&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000307645900005&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle