Title
Mechanics of snout expansion in suction-feeding seahorses : musculoskeletal force transmission Mechanics of snout expansion in suction-feeding seahorses : musculoskeletal force transmission
Author
Faculty/Department
Faculty of Sciences. Biology
Publication type
article
Publication
London ,
Subject
Biology
Human medicine
Source (journal)
The journal of experimental biology. - London
Volume/pages
216(2013) :3 , p. 407-417
ISSN
0022-0949
ISI
000313740600016
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
Seahorses and other syngnathid fishes rely on a widening of the snout to create the buccal volume increase needed to suck prey into the mouth. This snout widening is caused by abduction of the suspensoria, the long and flat bones outlining the lateral sides of the mouth cavity. However, it remains unknown how seahorses can generate a forceful abduction of the suspensoria. To understand how force is transmitted to the suspensoria via the hyoid and the lower jaw, we performed mathematical simulations with models based on computerized tomography scans of Hippocampus reidi. Our results show that the hinge joint between the left and right hyoid bars, as observed in H. reidi, allows for an efficient force transmission to the suspensorium from a wide range of hyoid angles, including the extremely retracted hyoid orientations observed in vivo for syngnathids. Apart from the hyoid retraction force by the sternohyoideushypaxial muscles, force generated in the opposite direction on the hyoid by the mandibulohyoid ligament also has an important contribution to suspensorium abduction torque. Forces on the lower jaw contribute only approximately 10% of the total suspensorium torque. In particular, when dynamical aspects of hyoid retraction are included in the model, a steep increase is shown in suspensorium abduction torque at highly retracted hyoid positions, when the linkages to the lower jaw counteract further hyoid rotation in the sagittal plane. A delayed strain in these linkages allows syngnathids to postpone suction generation until the end of cranial rotation, a fundamental difference from non-syngnathiform fishes.
E-info
https://repository.uantwerpen.be/docman/iruaauth/0b86b5/d3a4818.pdf
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000313740600016&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000313740600016&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000313740600016&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle