Title
|
|
|
|
Tight-binding study of bilayer graphene Josephson junctions
|
|
Author
|
|
|
|
|
|
Abstract
|
|
|
|
Using highly efficient simulations of the tight-binding Bogoliubov-de-Gennes model, we solved self-consistently for the pair correlation and the Josephson current in a superconducting-bilayer graphene-superconducting Josephson junction. Different doping levels for the non-superconducting link are considered in the short- and long-junction regimes. Self-consistent results for the pair correlation and superconducting current resemble those reported previously for single-layer graphene except at the Dirac point, where remarkable differences in the proximity effect are found, as well as a suppression of the superconducting current in the long-junction regime. Inversion symmetry is broken by considering a potential difference between the layers and we found that the supercurrent can be switched if the junction length is larger than the Fermi length. |
|
|
Language
|
|
|
|
English
|
|
Source (journal)
|
|
|
|
Physical review : B : condensed matter and materials physics. - Lancaster, Pa, 1998 - 2015
|
|
Publication
|
|
|
|
Lancaster, Pa
:
2012
|
|
ISSN
|
|
|
|
1098-0121
[print]
1550-235X
[online]
|
|
DOI
|
|
|
|
10.1103/PHYSREVB.86.184505
|
|
Volume/pages
|
|
|
|
86
:18
(2012)
, p. 1-7
|
|
Article Reference
|
|
|
|
184505
|
|
ISI
|
|
|
|
000310840400005
|
|
Medium
|
|
|
|
E-only publicatie
|
|
Full text (Publisher's DOI)
|
|
|
|
|
|
Full text (open access)
|
|
|
|
|
|