Publication
Title
Lipoteichoic acid is an important microbe-associated molecular pattern of **Lactobacillus rhamnosus** GG
Author
Abstract
Background Probiotic bacteria are increasingly used as immunomodulatory agents. Yet detailed molecular knowledge on the immunomodulatory molecules of these bacteria is lagging behind. Lipoteichoic acid (LTA) is considered a major microbe-associated molecular pattern (MAMP) of Gram-positive bacteria. However, many details and quantitative data on its immune signalling capacity are still unknown, especially in beneficial bacteria. Recently, we have demonstrated that a dltD mutant of the model probiotic Lactobacillus rhamnosus GG (LGG), having modified LTA molecules, has an enhanced probiotic efficacy in a DSS-induced colitis model as compared to wild-type. Results In this study, the importance of D-alanylated and acylated LTA for the pro-inflammatory activity of LGG was studied in vitro. Purified native LTA of LGG wild-type exhibited a concentration-dependent activation of NF-κB signalling in HEK293T cells after interaction with TLR2/6, but not with TLR2 alone. Chemical deacylation of LTA interfered with the TLR2/6 interaction, while a moderate effect was observed with chemical dealanylation. Similarly, the dltD mutant of LGG exhibited a significantly reduced capacity to activate TLR2/6-dependent NF-κB signalling in a HEK293T reporter cell line compared to wild-type. In addition, the dltD mutant of LGG showed a reduced induction of mRNA of the chemokine IL-8 in the Caco-2 epithelial cell line compared to wild-type. Experiments with highly purified LTA of LGG confirmed that LTA is a crucial factor for IL-8 mRNA induction in Caco-2 epithelial cells. Chemical dealanylation and deacylation reduced IL-8 mRNA expression. Conclusions Taken together, our results indicate that LTA of LGG is a crucial MAMP with pro-inflammatory activities such as IL-8 induction in intestinal epithelial cells and NF-κB induction in HEK293T cells via TLR2/6 interaction. The lipid chains of LGG LTA are needed for these activities, while also the D-alanine substituents are important, especially for IL-8 induction in Caco-2 cells.
Language
English
Source (journal)
Microbial cell factories. - London
Publication
London : 2012
ISSN
1475-2859
DOI
10.1186/1475-2859-11-161
Volume/pages
11 (2012) , p. 1-8
Article Reference
161
ISI
000313333100002
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 05.02.2013
Last edited 09.10.2023
To cite this reference