Publication
Title
Quantized vortices in an exciton-polariton condensate
Author
Abstract
One of the most striking quantum effects in an interacting Bose gas at low temperature is superfluidity. First observed in liquid 4He, this phenomenon has been intensively studied in a variety of systems for its remarkable features such as the persistence of superflows and the proliferation of quantized vortices1. The achievement of BoseEinstein condensation in dilute atomic gases2 provided the opportunity to observe and study superfluidity in an extremely clean and well-controlled environment. In the solid state, BoseEinstein condensation of exciton polaritons has been reported recently3, 4, 5, 6. Polaritons are strongly interacting lightmatter quasiparticles that occur naturally in semiconductor microcavities in the strong-coupling regime and constitute an interesting example of composite bosons. Here, we report the observation of spontaneous formation of pinned quantized vortices in the Bose-condensed phase of a polariton fluid. Theoretical insight into the possible origin of such vortices is presented in terms of a generalized GrossPitaevskii equation. Whereas the observation of quantized vortices is, in itself, not sufficient for establishing the superfluid nature of the non-equilibrium polariton condensate, it suggests parallels between our system and conventional superfluids.
Language
English
Source (journal)
Nature physics
Publication
2008
ISSN
1745-2473
1745-2481
Volume/pages
4:9(2008), p. 706-710
ISI
000259686400014
Full text (Publisher's DOI)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
External links
Web of Science
Record
Identification
Creation 13.02.2013
Last edited 21.06.2017