Publication
Title
Electrical control of the chemical bonding of fluorine on graphene
Author
Abstract
We study the electronic structure of diluted F atoms chemisorbed on graphene using density functional theory calculations. We show that the nature of the chemical bonding of a F atom adsorbed on top of a C atom in graphene strongly depends on carrier doping. In neutral samples the F impurities induce a sp(3)-like bonding of the C atom below, generating a local distortion of the hexagonal lattice. As the graphene is electron-doped, the C atom retracts back to the graphene plane and for high doping (10(14) cm(-2)) its electronic structure corresponds to a nearly pure sp(2) configuration. We interpret this sp(3)-sp(2) doping-induced crossover in terms of a simple tight-binding model and discuss the physical consequences of this change.
Language
English
Source (journal)
Physical review : B : condensed matter and materials physics. - Lancaster, Pa, 1998 - 2015
Publication
Lancaster, Pa : 2011
ISSN
1098-0121 [print]
1550-235X [online]
DOI
10.1103/PHYSREVB.83.081411
Volume/pages
83 :8 (2011) , 4 p.
Article Reference
081411
ISI
000287484800005
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 19.02.2013
Last edited 04.03.2024
To cite this reference