Title
|
|
|
|
Existence of superstructures due to large amounts of Fe vacancies in the -type framework
| |
Author
|
|
|
|
| |
Abstract
|
|
|
|
LiFePO4 has been under intense scrutiny over the past decade because it stands as an attractive positive electrode material for the next generation of Li-ion batteries to power electric vehicles and hybrid electric vehicles, hence the importance of its thermal behavior. The reactivity of LiFePO4 with air at moderate temperatures is shown to be dependent on its particle size. For nanosized materials, a progressive displacement of Fe from the core structure leading to a composite made of nanosize Fe2O3 and highly defective, oxidized LixFeyPO4 compositions, among which the "ideal" formula LiFe2/3PO4. Herein we report, from both temperature-controlled X-ray diffraction and electronic diffraction microscopy, that these off-stoichiometry olivine-type compounds show a defect ordering resulting in the formation of a superstructure. Such a finding shows striking similarities with the temperature-driven oxidation of fayalite Fe2SiO4 (another olivine) to structurally defective laihunite, reported in the literature three decades ago. |
| |
Language
|
|
|
|
English
| |
Source (journal)
|
|
|
|
Chemistry of materials / American Chemical Society. - Washington, D.C., 1989, currens
| |
Publication
|
|
|
|
Washington, D.C.
:
2011
| |
ISSN
|
|
|
|
0897-4756
[print]
1520-5002
[online]
| |
DOI
|
|
|
|
10.1021/CM102511M
| |
Volume/pages
|
|
|
|
23
:1
(2011)
, p. 32-38
| |
ISI
|
|
|
|
000285726900007
| |
Full text (Publisher's DOI)
|
|
|
|
| |
|