Title
Conservative distributed discrete-event simulation on the Amazon EC2 cloud : an evaluation of time synchronization protocol performance and cost efficiency Conservative distributed discrete-event simulation on the Amazon EC2 cloud : an evaluation of time synchronization protocol performance and cost efficiency
Author
Faculty/Department
Faculty of Sciences. Mathematics and Computer Science
Publication type
article
Publication
Amsterdam ,
Subject
Computer. Automation
Source (journal)
Simulation modelling practice and theory. - Amsterdam
Volume/pages
34(2013) , p. 126-143
ISSN
1569-190X
ISI
000319088800009
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
Distributed execution of simulation models comes into play when memory limitations of a single computational resource prohibit their execution. In addition, the potential for parallel execution of a model on a distributed platform through the integration of multiple computational cores, can potentially reduce the execution time of a simulation. However, such gains can be voided by the overhead that time synchronization protocols for parallel and distributed simulation induce. This overhead is determined by the protocol used, the characteristics of the simulation model, as well as the architectural and performance characteristics of the hardware platform used. Recently, Infrastructure-as-a-Service offerings in the cloud computing domain have introduced flexibility in acquiring access to virtualized hardware platforms on a pay-as-you-go basis. At present, it is however unclear to what extent these offerings are suited for the distributed execution of discrete-event simulations, and how the characteristics of different resource types impact the performance of distributed simulation under different time synchronization protocols. Likewise, it is unclear which type of resources are most cost-efficient for this type of workload. To our knowledge, this paper is the first to investigate these aspects through an assessment of the performance and cost efficiency of different conservative time synchronization protocols on a range of cloud resource types that are currently available on Amazon EC2. Our analysis shows that performance levels comparable to those realized on commodity hardware based-clusters are attainable, and that the relative performance of different synchronization protocols is retained on high-end IaaS resources. In terms of cost-efficiency, we find that IaaS products tailored to traditional cluster workloads do not necessarily constitute the optimal choice, and we assess the impact of different packing configurations for logical processes in this regard. (C) 2013 Elsevier B.V. All rights reserved.
E-info
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000319088800009&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000319088800009&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000319088800009&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle