Publication
Title
Frustrated pentagonal Cairo lattice in the non-collinear antiferromagnet
Author
Abstract
We report on the crystal structure and magnetism of the iron-based oxyfluoride Bi4Fe5O13F, a material prototype of the Cairo pentagonal spin lattice. The crystal structure of Bi4Fe5O13F is determined by a combination of neutron diffraction, synchrotron x-ray diffraction, and transmission electron microscopy. It comprises layers of FeO6 octahedra and FeO4 tetrahedra forming deformed pentagonal units. The topology of these layers resembles a pentagonal least-perimeter tiling, which is known as the Cairo lattice. This topology gives rise to frustrated exchange couplings and underlies a sequence of magnetic transitions at T-1 = 62 K, T-2 = 71 K, and T-N = 178 K, as determined by thermodynamic measurements and neutron diffraction. Below T-1, Bi4Fe5O13F forms a fully ordered non-collinear antiferromagnetic structure, whereas the magnetic state between T-1 and T-N may be partially disordered according to the sizable increase in the magnetic entropy at T-1 and T-2. Bi4Fe5O13F reveals unanticipated magnetic transitions on the pentagonal Cairo spin lattice and calls for a further work on finite-temperature properties of this strongly frustrated spin model. DOI: 10.1103/PhysRevB.87.024423
Language
English
Source (journal)
Physical review : B : condensed matter and materials physics. - Lancaster, Pa, 1998 - 2015
Publication
Lancaster, Pa : 2013
ISSN
1098-0121 [print]
1550-235X [online]
DOI
10.1103/PHYSREVB.87.024423
Volume/pages
87 :2 (2013) , p. 1-9
Article Reference
024423
ISI
000314224800002
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Project info
Counting Atoms in Nanomaterials (COUNTATOMS).
Multiferroics based on the Pb lone pair.
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 30.04.2013
Last edited 02.10.2024
To cite this reference