Title
Band structure quantization in nanometer sized ZnO clusters Band structure quantization in nanometer sized ZnO clusters
Author
Faculty/Department
Faculty of Sciences. Physics
Publication type
article
Publication
Cambridge ,
Subject
Physics
Chemistry
Engineering sciences. Technology
Source (journal)
Nanoscale / Royal Society of Chemistry. - Cambridge
Volume/pages
5(2013) :9 , p. 3757-3763
ISSN
2040-3364
ISI
000317859400026
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
Nanometer sized ZnO clusters are produced in the gas phase and subsequently deposited on clean Au(111) surfaces under ultra-high vacuum conditions. The zinc blende atomic structure of the approximately spherical ZnO clusters is resolved by high resolution scanning transmission electron microscopy. The large band gap and weak n-type conductivity of individual clusters are determined by scanning tunnelling microscopy and spectroscopy at cryogenic temperatures. The conduction band is found to exhibit clear quantization into discrete energy levels, which can be related to finite-size effects reflecting the zero-dimensional confinement. Our findings illustrate that gas phase cluster production may provide unique possibilities for the controlled fabrication of high purity quantum dots and heterostructures that can be size selected prior to deposition on the desired substrate under controlled ultra-high vacuum conditions.
Full text (open access)
https://repository.uantwerpen.be/docman/irua/198dc1/4735.pdf
E-info
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000317859400026&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000317859400026&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000317859400026&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle