Title
Organochlorine pesticides in soil, moss and tree-bark from North-Eastern Romania Organochlorine pesticides in soil, moss and tree-bark from North-Eastern Romania
Author
Faculty/Department
Faculty of Pharmaceutical, Biomedical and Veterinary Sciences. Pharmacy
Publication type
article
Publication
Amsterdam ,
Subject
Chemistry
Biology
Source (journal)
The science of the total environment. - Amsterdam
Volume/pages
456(2013) , p. 317-324
ISSN
0048-9697
ISI
000320343700036
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
Concentrations of organochlorine pesticides (OCP5), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDE) have been determined in soil, mosses and tree bark samples collected from the same locations in North-Eastern Romania (region of Moldavia). PCBs and PBDEs were under the limit of quantification in all investigated samples. OCPs were the principal pollutants found in the analysed samples. In soil, moss and tree bark samples, DDT together with its metabolites, was the most abundant OCP ranging between 4.4-79, 5.8-95 and 11-440 ng g(-1) in the individual matrices, followed by HCH isomers with levels between 1.1-9.8,8.9-130 and 12-130 ng g(-1) in soil, moss and bark respectively. To distinguish between the previous and current pollutant input and preferential biodegradation of DDT metabolites, the degradation ratios were calculated between the parent substances and their metabolites (DDT and HCH isomers). The investigation indicates no important pollution sources near sampling sites and reveals that OCPs originate mainly from long-range air transport processes and through atmospheric deposition of isomers volatilised from secondary sources. Discriminant function analysis was performed to determine whether OCPs uptake differ among the three matrices (soil, moss and tree bark). A good separation was observed between tree bark and the other two matrices. The most redundant variable appears to be p,p'-DDE (R-2 = 0.336), while the most informative variable seems to be o,p'-DDT (R-2 = 0.0361). Significant correlations were found between bark and moss concentrations for most alpha-HCH and p,p'-DDD (p <0.01). We have also investigated the enantiomeric signature of a-HCH. For bark and moss, EF values suggest preferential degradation of the (-)alpha-HCH enantiomer. (C) 2013 Elsevier B.V. All rights reserved.
E-info
https://repository.uantwerpen.be/docman/iruaauth/170142/f2d4641.pdf
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000320343700036&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000320343700036&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000320343700036&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle