Publication
Title
Cerenkov emission of terahertz acoustic-phonons from graphene
Author
Abstract
We present a theoretical study of the electrical generation of acoustic-phonon emission from graphene at room temperature. The drift velocity (v(x)) and temperature of electrons driven by dc electric field (F-x) are determined by solving self-consistently the momentum-and energy-balance equations derived from the Boltzmann equation. We find that in the presence of impurity, acoustic-and optic-phonon scattering, v(x) can be much larger than the longitudinal (v(l)) and transverse (v(t)) sound velocities in graphene even within the linear response regime. As a result, although the acoustic Cerenkov effect cannot be obviously seen in the analytical formulas, the enhanced acoustic-phonon emission can be observed with increasing F-x when v(x) > v(l) and v > v(t). The frequency of acoustic-phonon emission from graphene can be above 10 THz, which is much higher than that generated from conventional semiconductor systems. This study is pertinent to the application of graphene as hypersonic devices such as terahertz sound sources. (C) 2013 AIP Publishing LLC.
Language
English
Source (journal)
Applied physics letters / American Institute of Physics. - New York, N.Y., 1962, currens
Publication
New York, N.Y. : American Institute of Physics, 2013
ISSN
0003-6951 [print]
1077-3118 [online]
Volume/pages
102:22(2013), p. 1-4
Article Reference
222101
ISI
000320621600034
Medium
E-only publicatie
Full text (Publishers DOI)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identification
Creation 04.09.2013
Last edited 04.04.2017
To cite this reference