Publication
Title
Phonon-assisted Zener tunneling in a cylindrical nanowire transistor
Author
Abstract
The tunneling current has been computed for a cylindrical nanowire tunneling field-effect transistor (TFET) with an all-round gate that covers the source region. Being the underlying mechanism, band-to-band tunneling, mediated by electron-phonon interaction, is pronouncedly affected by carrier confinement in the radial direction and, therefore, involves the self-consistent solution of the Schrodinger and Poisson equations. The latter has been accomplished by exploiting a non-linear variational principle within the framework of the modified local density approximation taking into account the nonparabolicity of both the valence band and conduction band in relatively thick wires. Moreover, while the effective-mass approximation might still provide a reasonable description of the conduction band in relatively thick wires, we have found that the nonparabolicity of the valence band needs to be included. As a major conclusion, it is observed that confinement effects in nanowire tunneling field-effect transistors have a stronger impact on the onset voltage of the tunneling current in comparison with planar TFETs. On the other hand, the value of the onset voltage is found to be overestimated when the valence band nonparabolicity is ignored. (C) 2013 AIP Publishing LLC.
Language
English
Source (journal)
Journal of applied physics / American Institute of Physics. - New York, N.Y., 1937, currens
Publication
New York, N.Y. : American Institute of Physics, 2013
ISSN
0021-8979 [print]
1089-7550 [online]
Volume/pages
113:18(2013), p. 1-8
Article Reference
184507
ISI
000319294100093
Medium
E-only publicatie
Full text (Publishers DOI)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identification
Creation 04.09.2013
Last edited 08.04.2017
To cite this reference