Publication
Title
Low-dose micro-CT imaging for vascular segmentation and analysis using sparse-view acquisitions
Author
Abstract
The aim of this study is to investigate whether reliable and accurate 3D geometrical models of the murine aortic arch can be constructed from sparse-view data in vivo micro-CT acquisitions. This would considerably reduce acquisition time and X-ray dose. In vivo contrast-enhanced micro-CT datasets were reconstructed using a conventional filtered back projection algorithm (FDK), the image space reconstruction algorithm (ISRA) and total variation regularized ISRA (ISRA-TV). The reconstructed images were then semi-automatically segmented. Segmentations of high-and low-dose protocols were compared and evaluated based on voxel classification, 3D model diameters and centerline differences. FDK reconstruction does not lead to accurate segmentation in the case of low-view acquisitions. ISRA manages accurate segmentation with 1024 or more projection views. ISRA-TV needs a minimum of 256 views. These results indicate that accurate vascular models can be obtained from micro-CT scans with 8 times less X-ray dose and acquisition time, as long as regularized iterative reconstruction is used.
Language
English
Source (journal)
PLoS ONE
Publication
2013
ISSN
1932-6203
DOI
10.1371/JOURNAL.PONE.0068449
Volume/pages
8 :7 (2013) , p. 1-10
Article Reference
e68449
ISI
000321271900032
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Project info
Translational Molecular Imaging Program for the University of Antwerp: application driven preclinical research.
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 10.09.2013
Last edited 09.10.2023
To cite this reference