Title
Edge effects on soil acidification in forests on sandy soils under high deposition load Edge effects on soil acidification in forests on sandy soils under high deposition load
Author
Faculty/Department
Faculty of Sciences. Bioscience Engineering
Publication type
article
Publication
Dordrecht ,
Subject
Physics
Chemistry
Biology
Source (journal)
Water, air, and soil pollution. - Dordrecht
Volume/pages
224(2013) :6 , p. 1-14
ISSN
0049-6979
Article Reference
1545
Carrier
E-only publicatie
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
This study investigated how forest soil acidification is affected by edge proximity. We measured pH(KCl) and exchangeable K, Ca, Mg and Al concentrations of the mineral topsoil (0-30 cm) from the exposed edge to the interior (128 m from the edge) of three deciduous and four coniferous forest stands. From the front edge to the interior of the deciduous stands, the pH(KCl) values decreased at 0-5 cm soil depth (from 3.07 to 2.98) but increased at 5-10 cm (from 3.26 to 3.32) and 10-30 cm (from 3.48 to 3.75) depth. In the coniferous stands, pH(KCl) values declined from edge to interior at all soil depths, i.e. from 3.10 to 2.89, from 3.26 to 3.06 and from 3.54 to 3.31 at 0-5, 5-10 and 10-30 cm, respectively. The concentrations of exchangeable cations decreased from edge to interior, with larger differences in the coniferous (of up to 265 %) than in the deciduous stands (up to 99 %). At forest edges, enhanced soil acidification due to higher potentially acidifying deposition could be counteracted in the upper mineral soil by higher base cation throughfall and litterfall, faster litter decomposition, higher soil organic matter content, lower nitrate leaching from the soil and/or lime fertiliser drift. Nonetheless, deeper in the soil of the deciduous stands, these buffer processes seem unable to counteract soil acidification due to potentially acidifying deposition at the edges. Edge effects on soil acidity are important since they can translate into effects on plant communities, soil biota, nitrogen cycling and carbon sequestration.
E-info
https://repository.uantwerpen.be/docman/iruaauth/6df100/8d65390.pdf
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000321665000003&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000321665000003&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle