Publication
Title
Testing the statistical significance of microsimulation results : often easier than you think : a technical note
Author
Abstract
In the microsimulation literature, it is still uncommon to test the statistical significance of results. In this note we argue that this situation is both undesirable and unnecessary. Provided the parameters used in the microsimulation are exogenous, as is often the case in static microsimulation of the first-order effects of policy changes, simple statistical tests can be sufficient. Moreover, standard routines have been developed which enable applied researchers to calculate the sampling variance of microsimulation results, while taking the sample design into account, even of relatively complex statistics such as relative poverty, inequality measures and indicators of polarization, with relative ease and a limited time investment. We stress that when comparing simulated and baseline variables, as well as when comparing two simulated variables, it is crucial to take account of the covariance between those variables. Due to this covariance, the mean difference between the variables can generally (though not always) be estimated with much greater precision than the means of the separate variables.
Language
English
Source (series)
Methodological paper ; 13/10
Publication
Antwerp : University of Antwerp, Herman Deleeck Centre for Social Policy, 2013
Volume/pages
24 p.
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Record
Identification
Creation 17.09.2013
Last edited 04.10.2013
To cite this reference