Publication
Title
Mathematical properties of Q-measures
Author
Abstract
Q-measures are network indicators that gauge a node's brokerage role between different groups in the network. Previous studies have focused on their definition for different network types and their practical application. Little attention has, however, been paid to their theoretical and mathematical characterization. In this article we contribute to a better understanding of Q-measures by studying some of their mathematical properties in the context of unweighted, undirected networks. An external Q-measure complementing the previously defined local and global Q-measure is introduced. We prove a number of relations between the values of the global, the local and the external Q-measure and betweenness centrality, and show how the global Q-measure can be rewritten as a convex decomposition of the local and external Q-measures. Furthermore, we formally characterize when Q-measures obtain their maximal value. It turns out that this is only possible in a limited number of very specific circumstances. (C) 2013 Elsevier Ltd. All rights reserved.
Language
English
Source (journal)
Journal of informetrics. - Amsterdam
Publication
Amsterdam : 2013
ISSN
1751-1577
Volume/pages
7:3(2013), p. 737-745
ISI
000323859700019
Full text (Publishers DOI)
Full text (open access)
Full text (publishers version - intranet only)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identification
Creation 15.10.2013
Last edited 28.04.2017
To cite this reference