Publication
Title
Magnetically decorated multiwalled carbon nanotubes as dual MRI and SPECT contrast agents
Author
Abstract
Carbon nanotubes (CNTs) are one of the most promising nanomaterials to be used in biomedicine for drug/gene delivery as well as biomedical imaging. This study develops radio-labeled, iron oxide-decorated multiwalled CNTs (MWNTs) as dual magnetic resonance (MR) and single photon emission computed tomography (SPECT) contrast agents. Hybrids containing different amounts of iron oxide are synthesized by in situ generation. Physicochemical characterisations reveal the presence of superparamagnetic iron oxide nanoparticles (SPION) granted the magnetic properties of the hybrids. Further comprehensive examinations including high resolution transmission electron microscopy (HRTEM), fast Fourier transform simulations, X-ray diffraction, and X-ray photoelectron spectroscopy assure the conformation of prepared SPION as γ-Fe2O3. High r2 relaxivities are obtained in both phantom and in vivo MRI compared to the clinically approved SPION Endorem. The hybrids are successfully radio labeled with technetium-99m through a functionalized bisphosphonate and enable SPECT/CT imaging and γ-scintigraphy to quantitatively analyze the biodistribution in mice. No abnormality is found by histological examination and the presence of SPION and MWNT are identified by Perls stain and Neutral Red stain, respectively. TEM images of liver and spleen tissues show the co-localization of SPION and MWNTs within the same intracellular vesicles, indicating the in vivo stability of the hybrids after intravenous injection. The results demonstrate the capability of the present SPIONMWNT hybrids as dual MRI and SPECT contrast agents for in vivo use.
Language
English
Source (journal)
Advanced functional materials. - Weinheim
Publication
Weinheim : 2014
ISSN
1616-301X
DOI
10.1002/ADFM.201302892
Volume/pages
24 :13 (2014) , p. 1880-1894
ISI
000333674100007
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Project info
ESTEEM 2 - Enabling science and technology through European electron microscopy.
Counting Atoms in Nanomaterials (COUNTATOMS).
RADDEL: Nanocapsules for targeted delivery of radioactivity
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 26.11.2013
Last edited 09.10.2023
To cite this reference